
College Student Retention Risk Analysis from Educational Database Using
Multi-Task Multi-Modal Neural Fusion

Mohammad Arif Ul Alam
University of Massachusetts Lowell, MA, USA

mohammadariful alam@uml.edu

Abstract

We develop a Multimodal Spatiotemporal Neural Fusion
network for Multi-Task Learning (MSNF-MTCL) to predict
5 important students’ retention risks: future dropout, next
semester dropout, type of dropout, duration of dropout and
cause of dropout. First, we develop a general purpose multi-
modal neural fusion network model MSNF for learning stu-
dents’ academic information representation by fusing spatial
and temporal unstructured advising notes with spatiotempo-
ral structured data. MSNF combines a Bidirectional Encoder
Representations from Transformers (BERT)-based document
embedding framework to represent each advising note, Long-
Short Term Memory (LSTM) network to model temporal ad-
vising note embeddings, LSTM network to model students’
temporal performance variables and students’ static demo-
graphics. The final fused representation from MSNF has been
utilized on a Multi-Task Cascade Learning (MTCL) model to-
wards building MSNF-MTCL for predicting 5 student reten-
tion risks. We evaluate MSNF-MTCL on a large educational
database consists of 36,445 college students over 18 years pe-
riod of time that provides promising performances comparing
with the nearest state-of-the-art models. Additionally, we test
the fairness of such model given the existence of biases.

Introduction
The U.S. National Center for Education Statistics (NCES)
reports that in United States, the average retention rate
for higher education institutions is 71% (McFarland 2017).
While, 57% of college admitted students do not complete
four-year colleges within six years, 33% of them drop out
from college without any degree (McFarland 2017). For
some students, dropping out is the culmination of years of
academic hurdles, missteps, and wrong turns. For others, the
decision to drop out is a response to conflicting life pres-
sures, the need to help support their family financially or
the demands of caring for siblings or their own child. Drop-
ping out is sometimes about students being bored and see-
ing no connection between academic life and ”real” life. It’s
about young people feeling disconnected from their peers
and from teachers and other adults at school (CATERALL
1998). Although the reasons for dropping out vary, the con-
sequences of the decision are remarkably similar. Low reten-
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tion rates not only impact the financial well-being of individ-
uals but the economy as a whole, college dropouts are more
likely to head down a path that leads to lower-paying jobs,
poorer health, and the possible continuation of a cycle of
poverty that creates immense challenges for families, neigh-
borhoods, and communities (McFarland 2017). Low reten-
tion rates also adversely affect the reputation of the educa-
tional institution and could lead to potential loss of funding
and inability to compete for quality students (CRONINGER
and LEE 2001). Thus, improving student retention is of
paramount importance at institutions of higher education.

Many researchers have proposed to model factors impact-
ing student dropout from large scale educational database
using statistical and machine learning models. Most re-
searchers have focused on using static or temporal structured
data, such as GPA, SAT scores etc., that are readily avail-
able in institutional databases (Prenkaj, Stilo, and Madeddu
2020a). Some of the researchers proposed to use unstruc-
tured text analysis such as advising notes, forum post, social
media status, online chats and email mining using natural
language processing techniques to predict student dropout
(Jayaraman 2020; Tinto 1993). However, none of the re-
searchers proposed to combine structured and unstructured
data in spatiotemporal fashion that can provide significant
promise in this domain of research. We propose MSNF-
MTCL with the following key contributions:

• We develop a novel multimodal spatiotemporal neural fu-
sion model MSNF for educational database to fuse tem-
poral student advising notes extracted BERT embedding,
temporal student performance variables and static stu-
dent demographic information via temporal document
encoder, temporal performance encoder and static demo-
graphic encoder respectively.

• We develop a cascaded information network-based
Multi-Task Cascade Learning (MTCL) layer on the top
of the fusion layer to build our core MSNF-MTCL model
by placing lower-level tasks at earlier layers so that the
features learned for these tasks may be used by higher-
level tasks for 5-tasks MTCL problem.

• We evaluate MSNF-MTCL on a large scale collected data
from a University from a third world country via com-
paring the performance with nearest state-of-the-art so-
lutions.
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• Additionally, we tested the existence of biases and ap-
plied bias mitigation technique to confirm fairness of
MSNF-MTCL.

Related Works
Traditionally, education researchers run surveys to find the
facts impacting dropped out students dropout that include
academic difficulty, adjustment problems, lack of clear aca-
demic goals, lack of commitment, inability to integrate with
the college community, uncertainty, incongruence, isolation
as factors involved in student dropout (Tinto 1993). The
surveys result some key factors such as past and current
academic success, high school GPA, SAT scores (Porter
2008), major and number of credit hours taken during the
first semester (Cabrera 1993). effect of financial aid (Her-
zog 2005). Machine learning techniques on educational
database has been relatively new (Alfredo Perez 2018; Iam-
on and Boongoen 2017; Prenkaj, Stilo, and Madeddu 2020b;
Coussement et al. 2020; Pellagatti et al. 2021). Perez et. al.
proposed logistic regression and decision tree based dropout
prediction from static students’ data (Alfredo Perez 2018).
(Iam-on and Boongoen 2017) proposed a link-based cluster
ensemble for predicting student dropout from mixed-type
(categorical and continuous) educational dataset. (Prenkaj,
Stilo, and Madeddu 2020b) presented benchmark student
dropout definition and dropout prediction paradigm by de-
veloping machine and deep learning techniques and their re-
lated privacy concerns from static and temporal structured
data. (Coussement et al. 2020) proposed logit leaf model
(LLM) on students classroom characteristics, cognitive and
behavioral engagement variables and other static variables
available from online students’ enrollment database. (Pella-
gatti et al. 2021) proposed a Generalized mixed-effects ran-
dom forest model to analyze hierarchical data to predict en-
gineering students’ dropout from static data from large scale
educational dataset. On the other hand, student dropout pre-
diction from advising notes has been explored only once
(Jayaraman 2020) that proposed a sentiment analysis tech-
nique to mine advising notes towards predicting students’
dropout. Additionally, this paper proposed an explanation
i.e. weighted ranking of contributing sentiments towards
predicting students’ dropout. (Yu, Lee, and Kizilcec 2021)
proposed a fair student dropout prediction system from edu-
cational database. (Prenkaj, Stilo, and Madeddu 2020a) ana-
lyzed the challenges of student dropout from static database
that involves definition, machine learning techniques to be
used, evaluation measures and privacy concerns.

Combining structured and unstructured data has been
popular in image processing content learning and electronic
health record analytics for decades. (Wan et al. 2014) pro-
posed deep spatial CNN model to extract features from
image-text pairs. (Tam et al. 2021) presents LSTM-CNN fu-
sion to combine clinical image and electronic health records
together for predicting clinical events derived cohorts. (Wu
2021) presents utilized unstructured-structured text fusion
model for predicting cognitive engagement. Similar ap-
proach has been conducted in many domains such as mor-
tality prediction (Baxter et al. 2020), structured visualization
from unstructured texts (Li et al. 2021), financial transaction

prediction (Au, Ait-Azzi, and Kang 2021) and so on.
Multi-task learning (MTL) has been investigated mostly

by computer vision researchers that are categorized in many
terms such as shared trunk, cross-talk, prediction disti-
lation, task routing. In NLP, the MTL falls under many
categories. Traditional feed-forward neural networks (non-
attention based) focused on developing structural resem-
blance of shared global feature extractor followed by task-
specific output branches where features are word represen-
tations (Collobert et al. 2011). Recurrent neural network
models in MTL mostly focused on novel recurrent neu-
ral architectures adopted in multi-task fashion with multi-
variant parameter sharing schemes i.e., one-to-one, one-to-
many and many-to-many or task specific LSTMs (Liu et al.
2015; Dong et al. 2015). Cascaded information techniques
mostly focused on lower-level tasks at earlier layers so that
the features learned for these tasks may be used by higher-
level tasks (Sanh, Wolf, and Ruder 2019). Adversarial fea-
ture separation techniques introduce an adversarial learning
framework for MTL in order to distill learned features into
task-specific and task-agnostic subspaces. Their architecture
is comprised of a single shared LSTM layer and one task-
specific LSTM layer per task(Ruder et al. 2019). BERT in
MTL mostly focused on adding shared BERT embedding
layers on the traditional, LSTM or cascaded information
technique (Liu et al. 2020).

To our best knowledge, (MSNF-MTCL) is the first of
its kind, that develops a Multimodal Spatiotemporal Neu-
ral Fusion for MTL model combining structured, unstruc-
tured, spatio-temporal contexts on educational data. More
elaborately, we design multimodal neural network model
to fuse static students’ structured demographic informa-
tion, temporal students’ structured performance information
and temporal students’ unstructured advising notes and de-
velop a novel classification model towards predicting stu-
dent dropout, next semester dropout and dropout cause iden-
tification.

Data Description
We obtained an educational database from a private uni-
versity located in a developing world country consists of
36,445 undergraduate students where female (10,237) and
male (26,208) students’ ratio ( 28% by 72%) is similar to
national literacy statistics of the country. Among the stu-
dents, 14% are dropped out (female-male dropout are 11%
and 15%) in any point of their study. While any dropout in-
cident happened, dropped out students were contacted by
university counselling office via phone to analyze the inci-
dent which has been categorized into two classes (1) tem-
porary dropout, (2) permanent dropout. Here, the causes of
permanent dropout has been sub-categorized into 10 classes
(financial, family, marriage, sickness and so on) and tem-
porary dropout has been sub-categorized into 14 classes (fi-
nancial, internship, sickness, accident, marriage, COVID-19
related, family member death, struggling with grades and so
on). Both of temporary and permanent dropout causes have
9 overlaps and in total 15 unique causes have been struc-
tured to represent any kind of dropout causes. It should be
noted that location transfer and university transfer reasons

12690



Gender Count Dropout Temporary Permanent
Female 5,498

(24%)
1,103
(11%)

717 (65%) 386 (35%)

Male 17,897
(76%)

3,857
(15%)

2,931
(76%)

926 (15%)

Total 23,395 4,960
(14%)

3,648
(74%)

1,312
(26%)

Table 1: Description of the obtained educational database

were not considered as dropout in the inclusion criteria, and
these information has been removed from every statistics.
While getting admitted, students were provided few demo-
graphic data related to students personal profile, prior ed-
ucation details, family information and financial informa-
tion. Since the admission, university administration has been
recording students’ temporal performances in each courses
taken along with few administrative structured information
such as payment due, blocked to register for next semester
(due to any critical incidents, past significant payment dues),
scholarship awarded etc. Each semester, students were re-
quired to visit to his/her academic advisor to discuss various
topics related to academia which is more likely to be the first
month of the semester. Sometimes, students were blocked
from registering to next semester without consulting aca-
demic advisor due to many reasons, such as, poor grades,
excessive missing of attendance, payment dues. However,
students also could schedule meeting with their academic
advisor anytime of the semester to discuss various topics
(from personal to academic). It should be noted that, only
primary cause of dropout has been noted during the coun-
selling session. Table 1 and Table 2 present the details of the
statistics of the dataset and features information derived/ex-
tracted from the database respectively.

Multi-Task Multi-Modal Neural Fusion Model
for Predicting Student Retention Risks

In this section, we describe the problem formulation, multi-
modal spatiotemporal neural fusion and multi-task neural
cascade networks to solve student retention risks prediction.
The overall framework has been shown in Fig 1. The lower
module ”Multi-Modal Fusion” generates, L, a spatiotempo-
ral fused layer that has been shared across all tasks, while the
upper module ”Multitask Neural Cascades” represent task-
specific outputs, L, in our case L ∈ {L1, L2, L3, L4, L5}.

Multimodal Spatiotemporal Neural Fusion
This module consists of advising note representation via
BERT-based document embedding, sequential encoder net-
work on temporal advising note documents from BERT em-
bedding, development of temporal structured performance
information encoder, development of static information en-
coder and a fusion layer that has been shared by each task
of Multi-Task Cascade network. The input can be repre-
sented as X ∈ {P,D,N} where P,D,N represent tem-
poral structured performance data, static students demo-
graphic data and temporal students’ advising/counselling

Variables Features
Static and
structured
Demo-
graphic

birth date, age, gender, religion, starting
major, transferred credits, blood group,
birth place, permanent address, local ad-
dress, Secondary School grade, higher
school grade, marital status, source of fi-
nance, part-full time, local guardian, par-
ents financial income

Temporal
and struc-
tured
Perfor-
mance

new credits taken, credits retaken, pass-
ing credits, failed credits, overall atten-
dance, average semester starting GPA, av-
erage semester GPA, average semester
ending GPA, number of exams unat-
tended since admission, number of ex-
ams unattended in this semester, num-
ber of counselling scheduled, amount of
payment due in this semester, number of
payment dues since admission, study du-
ration, blocked from registering in next
semester, number of block since admis-
sion, scholarship amount, accommodation
status (on/off campus), total scholarship till
date, average scholarship per semester

Temporal
Advising
Notes

structured: reason of counselling visits,
counselling conduct date, counselling re-
sult (no result or cause of dropout) unstruc-
tured: counselling note

Dropout
Causes

*financial, *family, *marriage, *physically
ill, *death of family member, *personal,
†death, *accident, *struggling with grades,
*COVID-19 family death, COVID-19 fi-
nancial, COVID-19 online class attending
hardship, internship, traveling, mentally ill

Table 2: Description of the features provided/generated from
the educational database

notes. The output of this layer is fused representation of
spatiotemporal inputs of X which can be represented as
Z ∈ {Ztemporal, Zstatic, Znote}.

Static Information Encoder (Zstatic) The static student
description (Table 2) data D ∈ {D1, D2..Dn} has been con-
verted into one-hot vectors through static student description
encoder to generate output Zstatic. This encoder consists of
a series of convolution (CNN) layers, where each CNN layer
further followed by batch normalization, max pooling, and
dropout layer. The first 1D CNN layer takes the one-hot en-
coded static feature and structured demographic data (size:
120) as input and performs the filter operation with 8 filters
of size 11. The outputs of the first CNN layer are passed
to the second CNN layer (16 filters with a size of 5). Next,
the outputs of the second CNN layer are passed to the third
CNN layer (32 filters with a size of 3). Finally, the summary
of all the spatial features of a static input feature is passed to
the flatten layer to produce a 1D feature vector of size 50.
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Figure 1: Overall Architecture of Multimodal Spatiotemporal Neural Fusion (MSNF) Network model for predicting student
dropout risks i.e. dropout, next semester dropout and cause of dropout

Temporal Student Performance Encoder (Ztemporal)
To capture the longer dynamics in the temporal dimension
of the temporal student performance data, P ∈ {P1, P2..Pt}
where t represents the time, we have used two consecutive
LSTM layers: The first LSTM layer consists of 75 neurons,
and the second one with 55 neurons. Each LSTM layers are
followed by a dropout and batch normalization layer. Next, a
dense layer of 50 neurons, followed by a dropout and batch
normalization layer, is connected to another dense layer with
40 neurons. Finally, informative features of the input P have
been extracted to generate final encoded layer Ztemporal.

Sequential Advising Note Encoder (Znote) The input
N ∈ {N1, N2..Nt} here t represents time, which is a docu-
ment sequence. At first we perform BERT pre-trained em-
bedding fine-tuning as proposed in (Devlin et al. 2019).
First, we consider, each of the document consists of a se-
quence of sentences and each sentence has been considered
as a sequence of words. We represent each of the sequence
of word separated by token [CLS] while each sequence of
sentence has been separated by [SEP] token as described in
(Devlin et al. 2019) proposed method. Then we map the fi-
nal tokenized document into a sequence of input embedding
vectors, one for each token, constructed by summing the cor-
responding word, segment, and positional embeddings, thus
it is called input representation vector. Now, we use multi-
layered bidirectional Transformer encoder (BERT) (Devlin
et al. 2019) pre-trained embedding to map input representa-
tion vectors into a sequence of contextual embedding vec-

tors. Then, the sequence of contextual embedding vectors
are passed through a Bidirectional LSTM (BiLSTM) (Zhang
et al. 2020). The BiLSTM layer concatenates the outputs
from 2 hidden layers of opposite direction to the same out-
put and can capture long term dependencies in sequential
text data. The maxpooling layer takes the hidden states of
the BiLSTM layer as input and outputs the final text repre-
sentation Znote (Zhang et al. 2020).

Student Spatiotemporal Information Representation (Z)
The final students’ spatiotemporal information represen-
tation Z is obtained by concatenating the representa-
tions of sequential advising note, temporal student per-
formance, along with static student demographic infor-
mation. The representation of each student is zp ∈
Z = [Ztemporal, Zstatic, Znote] the size of this vector is
dtemporal, dstatic, dnote.

Multi-Task Neural Cascade Networks
We leverage the final task L as hierarchical composition of
five tasks (L ∈ {L1, L2, L3, L4, L5}) for future dropout,
type of dropout, next semester dropout, duration of dropout
and cause of dropout tasks respectively, to train our stu-
dent retention risk predictor by developing a Multimodal
Spatiotemporal Neural Fusion network for MTL (MSNF-
MTCL). We formulate two types of losses:

• Categorical cross-entropy loss for classification task

Lcat
i = −(ycati log(pi) + (1− ycati )(1− log(pi)) (1)
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where pi denotes probability of the classification task and
yfdi ∈ {y1, .., yn} denotes the ground-truth labels.

• Euclidean loss for regression task

Lreg
i = ||ŷregi − yregi ||

2
2 (2)

where ŷregi is the continuous estimated regression task
values and yregi is the ground truth.

We define each of task as of our multi-task model along
with the final multi-source learning scheme as follows:

Future Dropout (FD) This is a binary task involves pre-
dicting students’ dropout in future (true/false) which is ir-
respective of the semester or duration. The learning objec-
tive is formulated as a two-class classification problem. For
each sample, we use the cross-entropy loss L1

i similar to
Eqn. 1 where where pi is probability of dropout in future
and y1i ∈ {0, 1} denotes ground truth label.

Type of Dropout (TD) This binary task aiming to further
categorize dropout into temporary or permanent. Similar to
Eqn 1, we can formulate L2

i where where pi is probability of
type of dropout (temporary dropout, permanent dropout and
y2i ∈ {0, 1} denotes ground truth label.

Next Semester Dropout (ND) This binary task aims
to predict whether predicted dropped out student will be
dropped out in next semester or not. We use the cross-
entropy loss L3

i similar to Eqn. 1 where where pi is prob-
ability of next semester dropout and y3i ∈ {0, 1} denotes
ground truth label.

Duration of Dropout (DD) This regression task aims to
predict how many semesters students survive if the dropout
has been predicted. We use the Euclidean loss L4

i similar to
Eqn. 2 where where ŷ5i is the continuous estimated duration
of dropout in terms of semester and y5i is the ground truth.

Cause of Dropout (CD) This task aims to predict the
causes of dropout, i.e. one of the 15 causes as stated in Ta-
ble 2. We use the cross-entropy loss L5

i similar to Eqn. 1
where where pi is probability of each cause of dropout and
y5i ∈ {0, 1, .., 14} denotes ground truth label.

Multi-Conditional Training We employ five different
tasks on our encoded students’ information space Z, there
are different types of labels in each training sample.
While training on the samples, we follow the hierarchy
of L1(FD) → L2(TD) → L3(ND) → L4(DD) →
L5(CD) and develop an overall learning target as follows

L(Θ) = L1 + L2 + L3 + L4 + L5 (3)

While computing L, we abide the following strategies: if
y1i = 0 (no dropout), then we set, L2 = L3 = L4 = L5 = 0,
if y1i = 1 (no dropout) and y2i = 0 (permanent dropout), then
we set, L3 = L4 = L5 = 0, , if y1i = 1 (no dropout), y2i = 0
(permanent dropout), and y3i = 0 (next semester dropout =
true), then we set, L4 = L5 = 0. We compute L considering
altogether as per Eqn. 3 for all other cases.

Experiments
Baseline Models
Since, multi-task multi-modal neural fusion on educational
dataset is a novel problem for student retention risks estima-
tion, we could not find state-of-the-art solutions that match
with our problem as a baseline. In this regard, we imple-
ment few nearest problems along with their solutions and
formulate similar problem using our proposed MSNF-MTCL
framework. Apart from that, to establish the importance of
different modules of our framework, we develop different
versions of MSNF-MTCL consist of different combinations
of proposed modules. The baselines and different versions
of MSNF-MTCL framework have been described below:

• B1 (Jayaraman Model) (Jayaraman 2020): This
framework utilized only advising note and proposed a
lexicon-based sentiment analysis technique to extract
features and applied SVM machine learning techniques
on the features to predict student dropout. The framework
utilized Bing Lexicon (Liu 2010) model for feature ex-
traction that consists of 6,800 words, 2,000 positive and
4,800 negative sentiments.

• B2 (Pellagatti Model) (Pellagatti et al. 2021): This
framework considered students’ static and students’ tem-
poral structured data towards building a generalized
mixed-effects random forest (GMERF).

• B3 (Single Task Fusion and Replacing BERT with
Doc2Vec) (Zhang et al. 2020): This framework is the
closest one to our solution that has been developed to pre-
dict mortality of patients from electronic health records
(EHR). It followed a spatiotemporal neural fusion of pa-
tient notes, patients’ static demographic data and pa-
tient’s temporal hospital information altogether into a
fused layer that has been utilized to solve single task, pre-
dicting patients’ mortality. Instead of using lexicon tok-
enization and BERT model for encoding patient notes,
this framework utilized Doc2Vec embedding (Le and
Mikolov 2014).

• V1 (MSNF-MTCL with Structured Data Only): This
is a version of our proposed core MSNF-MTCL model
where we completely removed Temporal Advising Notes
input and considered only Structured data i.e. Temporal
Student Performance and Static Student Description in-
puts along with their encoders.

• V2 (MSNF-MTCL with Unstructured Advising Notes
Only): This is a version of our proposed core MSNF-
MTCL model where we included only Temporal Advis-
ing Notes input and its corresponding encoder.

• V3 (MSNF-MTCL): This is a complete MSNF-MTCL
model including all modules and inputs.

Results
We considered accuracy accuracy =

TP+TN
TP+TN+FP+FN where TP, TN, FP FN denote true−
positive, true − negative, false − positive, false −
negative and Standard Deviation ±% as evaluation metric
for classification tasks. We considered root mean squared
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Data #Classes B1 B2 B3 V1 V2 V3 (Ours)
FD (2) 72.45± 9.3 73.51± 8.6 75.47±6.8 80.76± 3.8 82.84± 4.2 98.78±0.01
TD (2) 61.65± 8.8 66.56± 9.1 70.77±8.4 76.42± 4.3 79.54± 5.3 89.73±0.01
ND (2) 60.65± 10.4 65.63± 9.2 68.84±8.3 78.73± 4.2 80.25± 4.1 93.25±0.01
DD 5.35± 0.87 3.65± 0.66 2.3±0.56 1.1± 0.18 0.85± 0.05 0.045±0.002
CD (15) 59.83± 8.4 59.42± 9.3 60.27±11.53 68.54± 5.3 70.54± 3.5 85.53±0.02

Table 3: Comparison of MSNF-MTCL performance on our dataset with different baseline models

SPD EOD AOD DI FD ND TD DD CD
Fairness target -0.1 to 0.1 -0.1 to 0.1 -0.1 to 0.1 0.8 to 1.2 98.78 89.73 93.25 0.045 85.53
Initial 0.25 -0.18 -0.19 0.53
RW 0.05 -0.03 -0.15 0.95 91.85 86.73 90.55 0.223 81.47
AB 0.09 -0.07 -0.11 1.0 90.34 87.45 89.65 0.23 81.34
ROBC 0.06 -0.11 0.08 0.91 91.24 86.43 89.38 0.09 80.44
EOPP 0.18 -0.15 -0.07 0.88 90.75 87.47 85.76 0.23 80.43
DIR 0.06 -0.09 -0.11 0.11 88.36 85.83 86.99 0.24 83.05
LFR 0.20 -0.10 0.01 1.0 90.77 83.84 88.87 0.145 82.75
CEOP 0.05 -0.05 -0.11 0.89 89.76 85.4 90.93 0.049 80.34
PR 0.06 -0.09 -.04 0.91 93.53 88.83 92.54 0.055 83.46

Table 4: Bias detection and mitigation experiment results. Here, column represents bias detection metrics: Statistical Parity
Difference (SPD), Equal Opportunity Difference (EOD), Average Odds Difference (AOD) and Disparate Impact (DI); while
rows represent bias mitigation techniques: Reweighing (RW), Adversarial Debiasing (AB), Reject Option Based Classifica-
tion (ROBC), Equalized odds post processing (EOPP), Disparate impact remover (DIR), Learning fair representation (LFR),
Calibrated equalized odds postprocessing (CEOP) and Prejudice remover (PR) for each of the task: future dropout (FD), next
semester dropout (ND), type of dropout (TD), duration of dropout (DD) and cause of dropout (CD)

deviation (RMSD) as evaluation metric for regression tasks.
We implemented baseline algorithms and our framework
using python-based Keras library. We train the model using
a learning rate of 0.001 for 16k iterations, and 0.0001 for
the next 5k until the training converges. We train the model
in 4 GPUs, each GPU holding 1 mini-batch (so the effective
mini-batch size is x4).

While developing baseline algorithms, we designed 5 sin-
gle task models for 5 retention risks. We considered 75% of
students’ data as training and rest of 25% of students’ data as
testing data during training and similar experiment has been
conducted 10 times on 10-fold cross experiment to generate
the results. We also utilized Synthetic Minority Oversam-
pling Technique (SMOTE) to correct the imbalance (Finlay,
Pears, and Connor 2014). SMOTE is a popular and robust
technique that uses a combination of oversampling the mi-
nority class and undersampling the majority class which re-
sults in better classifier performance than just oversampling
or undersampling. Table 3 shows detail results of our exper-
iment and comparisons.

In Table 3, we clearly can see that our proposed method
(V3-Ours) perform better than any other baseline frame-
works (B1, B2 or B3) for all student retention risk classifica-
tion/estimation. If we take closer look, we can see that, uti-
lizing only advising notes (V1) and only structured data (V2)
versions of our framework not only outperform their related
baselines (only advising note B1 and only structured data
B2), the outperform state-of-the-art single task spatiotem-
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Figure 2: Accuracy changes of five different retention risk
prediction tasks using our framework over number of avail-
able advising notes
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poral fusion model using Doc2Vec embedding framework
which has been successfully applied on EHR data before.

Bias Detection and Mitigation
Table 1 shows that the data is biased in terms of gender
(female-male ratio is 28% by 72%) which has potential
threat to AI fairness in our model. We utilize IBM AI Fair-
ness 360 (AIF360) tool to detect and mitigate biases for
dropout prediction in terms of gender considering ”Male”
as privileged group (Bellamy et al. 2019). Table 4 shows
AIF360 implemented 4 bias detection metrics, their corre-
sponding fairness target metric ranges and 8 bias mitigation
techniques generated bias detection metrics. The central no-
tions in this method: (1) all bias mitigation techniques are
not appropriate for every dataset; (2) to select right miti-
gation technique, the bias detection metrics should be fair
under maximum metrics; (3) accuracy drop due to bias mit-
igation should be minimum. Table 4 shows the final result
of our bias detection and mitigation test for student dropout
(only the first task of our multi-task model) where we can
see that ”Prejudice remover” technique provides maximum
fairness (fair in 4 bias detection metrics) and least accuracy
drop (accuracy drop of 3.33%).

Discussion
Fig. 2 illustrates the changes of accuracies over the number
of availability of each student’s advising note while predict-
ing their retention risks (five different tasks) which clearly
shows that different versions of our method (V1, V2 and
V3) outperform baseline methods significantly in any num-
ber of advising notes’ availability. Also, it can be clearly
stated that, the prediction accuracy of each task increases
as the number of available advising notes increases for each
student in the testing data. Fig 3 illustrates the prediction
accuracies of individual dropout cause (15 dropout causes)
using our proposed model, where we can see that (we re-
moved cause ”Own Death with index 7” due to ethical rea-
son), predicting dropout due to financial condition, family
reason, marriage related, struggling with grades, COVID-
19 related financial, COVID-19 related struggling in attend-
ing online classes and mentally ill, are extremely accurate
(95%+). However, it has been extremely difficult to predict
physical illness, death of family member and personal prob-
lem related college dropout from the educational data.

Limitations and Future Work
We utilized a large scale educational data of 18 years from
only one university which may create distribution biases.
To address biases, we additionally tested our framework
for bias mitigation. Moreover, our reproduction of baseline
models and evaluation on our dataset provide ample proof
that our model outperforms baseline frameworks. In our
framework, lower level cascaded task depends on the perfor-
mance of upper level tasks’ classification performances that
we did not align with state-of-the-art models’ implementa-
tions. The causes of dropout have been labeled in rolling
basis, i.e., when a faculty advisor thought that current ad-
visee needs to be assigned to a new cause, he reports to the

99

95

99

79

75

85

96

100

89

99 99

87 86

95

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 8 9 10 11 12 13 14 15

Figure 3: Causes of Dropout prediction results using our
overall framework. The causes of dropout have been indexed
with: 1. financial, 2. family, 3. marriage, 4. physically ill, 5.
death of family member, 6. personal, 7. own death, 8. acci-
dent, 9. struggling with grades, 10. COVID-19 family death,
11. COVID-19 financial, 12. COVID-19 online class attend-
ing hardship, 13. internship, 14. traveling, 15. mentally ill.
We removed 7.own death due to ethical reason.

system for an additional cause insertion. The administration
officer review that cause and accept the inclusion request
if that is absolutely valid. Our dataset consists of pre- and
post- COVID-19 pandemic data. However, due to extremely
poor number of data during post-COVID-19 era, we could
not develop a new model to identify COVID-19 impacts on
student dropout. In the current system, a faculty advisor can
only assign a single cause for a single advising note, that
made us difficult to predict multiple causes of a dropout in-
cident which is common in real life case. In future, we aim
to apply causal inference and information retrieval technique
for facts finding to describe COVID-19 impacts and multi-
ple causes extraction on student dropout more evidently. We
also utilized pre-trained BERT embedding model that has
been trained on wikipedia data. In future, we plan to develop
a new embedding, ”Educational BERT (EBERT)” trained on
only educational advising notes to enhance efficiency of any
student retention risk prediction.

Conclusion
Structured-unstructured data fusion in spatiotemporal do-
main across the educational institute has not been properly
exploited by researchers due to the unavailability of such
data and challenges of combining multi-modal educational
signals. Our breakthrough approach that provides highest
ever student dropout accuracy potentially can be adopted
by educational policy makers and university management
stakeholders in many other domains. Our novel problem
formulation, a multi-task student retention risks estimation
on 5 different student retention risk tasks, and solution, an
efficient multi-task multi-modal spatiotemporal neural net-
work model will open the door to many unsolved problems
in educational data mining research. Moreover, the frame-
work can be adapted in any databases in the world including
employee, email, electronic health record or google search
databases, and, can be utilized to solve extremely complex
problems.
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