

Game Design for Better Security of Combination Locks

Jean Pierre Astudillo Guerra, Karim Ahmed, Ryan Maher, Eddie Ubri, Jeremy Blum

The Pennsylvania State University
{jpa5180, kma5904, rxm5658, evu5018, jjb24}@psu.edu

Abstract
Dial locks are commonly used to secure a person’s items.
Commercially available dial locks often use four or five
wheels of letters, allowing a user to select a word as a com-
bination. In order to evaluate the security of these locks, we
create a game, with an instance created by the lock designer,
and played by a lock owner and a thief. In the game, the lock
owner chooses a word as a combination, and the thief creates
a brute force strategy to try all possible combinations that
yield words until the combination is found. To accomplish
the task, the thief will solve a version of the Probabilistic
Travelling Salesman Problem (PTSP) by creating an a priori
tour through all the words a lock can create. The goal for the
game designer, then, is to create a lock configuration that
maximizes the expected length of the best possible PTSP
tour. This paper describes a Genetic Algorithm (GA) ap-
proach to design a near-optimal game, i.e. a lock configura-
tion that makes it as difficult for the thief to crack. An analy-
sis of the output of the GA shows that the locks that the sys-
tem creates are significantly more secure than both commer-
cial locks, in the context of this game..

Introduction
Figure 1 displays a common combination lock, in which an
owner selects a n letter combination, chosen from sets of let-
ters provided for each position. The most common configu-
rations have four or five wheels with 10 letters on each
wheel. Often a space is provided on the last wheel, so that a
user can choose the space at the end of the combination for
an n – 1 letter word. To analyze the security of these locks,
we formulate a game, whose instance is created by a lock
designer and played by a thief and a lock owner. In this
game, the designer would like to choose a configuration for
the lock that makes it difficult for the thief to discover the
combination chosen by a lock owner. A lock owner chooses
a word at random that can be made by the lock. The thief
creates a plan to try all the possible words as combinations,
with as few expected operations as possible.

Copyright © 2022, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 More specifically, the formulation of this competition as
a game uses the following rules and assumptions. First, we
assume that the lock owner will choose as a combination,
with equal probability, one of the dictionary words that can
be made from the lock. The lock owner will set the initial
state of the lock so that it initially it is not a dictionary word.
The thief, starting from the initial state, will select an order
to visit all possible words that minimizes the expected num-
ber of operations needed to check every dictionary word.
We define an operation as either a turn of a wheel or an at-
tempt to open the lock. The problem that the thief is solving
is a version of the NP-hard Probabilistic Travelling Sales-
man Problem (PTSP) (Jaillet 1988).
 Under the threat environment represented by this game,
the lock designer must set two parameters: the letters on
each wheel and the ordering of the letters within a wheel.
Generally speaking, to maximize the length of the PTSP so-
lution, the designer would like to create a design with a large
number of possible words and a large distance between each
word. Given the intractability of the PTSP problem, the lock
design problem is also intractable.
 To manage this intractability, the lock design algorithm
estimates the optimal PTSP tour length through a using an
algorithm that provides a lower bound for the length of this
optimal tour. A GA algorithm then attempts to find the lock

Figure 1. A 4-letter code combination lock

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12706

design which maximizes the length of this lower bound for
the PTSP tour length.
 The lock configuration from the GA is then compared to
commercially available dial locks. The results indicate that
the lock configuration found by our algorithm greatly in-
creased the amount of work required for the thief, with an
increase of 77.4% operations on average and a 56.7% in-
crease in the total number of words our lock can create.
While these locks likely had additional design criteria, this
significant improvement suggests that viewing the security
of commercially available locks in the context of this game
could improve their security.

Related Work
The PTSP is a well-studied stochastic routing problem in
combinatorial optimization. In the PTSP, a demand to visit
each node occurs (with probability p) or does not occur
(with probability 1 − p) during a given day. In the Travelling
Salesman Problem (TSP), the objective is to find the shortest
tour through all the cities such that no city is visited twice,
and the salesman returns at the end of the tour back to the
starting city. However, in the PTSP the objective is to mini-
mize the expected length of the a priori tour where each cus-
tomer requires a visit only with a given probability (Marina-
kis and Marinaki 2010). The a priori tour can be seen as a
template for the visiting sequence of all customers. In a
given instance, the salesman travels along the a priori tour
until all customers that should be visited are reached. The
remaining ones that do not need to be visited will simply be
skipped. The TSP can be treated as a special case of the
PTSP. The main difference between PTSP and TSP is that
in PTSP the probability of each node being visited is be-
tween 0.0 and 1.0 while in TSP the probability of each node
being visited is 1.0 (Liu 2007).

The PTSP belongs to the class of NP-hard problems
(Bertsimas, Jaillet, and Odoni 1990). This means that there
is no known polynomial time algorithm for its solution.
Therefore, there have been algorithms created with powerful
heuristics to find good suboptimal solutions in reasonable
amounts of time.
 Let’s consider this routing problem with a set of n nodes
(Jaillet 1988). On any given instance of the problem, only a
subset consisting of k out of the n nodes (0 ≤ k ≤ n) must be
visited. However, the exact k nodes that must be visited are
not known a priori. The length of an actual tour can be de-
fined as the length of this a priori path from the start node to
the last of the k nodes in a given instance. Since the instance
is chosen from a probability distribution, and the tour is set
before this instance is known, the goal is to minimize the
expected length of this tour.
 Using a similar approach to the PTSP, the lock designer
wants to create as hard an instance of the PTSP problem as

possible. Thus, the goal is to create a lock configuration that
maximizes the expected length of this a priori tour through
all the potential words.

Since the PTSP is NP-hard, we will not try to solve it ex-
actly. Rather, we will use a lower bound on the PTSP prob-
lem as an estimate of the fitness for the optimal PTSP tour.
Lower bounds for the TSP problem have been established
for a variety of reasons in the past, including speeding up
branch-and-bound algorithms (Christofides 1972). These
lower bounds include ones derived from the Minimum
Spanning Tree, and repeated reduction of the distance ma-
trix through a contraction algorithm.

As discussed earlier in this paper, the task of finding the
optimal lock configuration is an intractable problem. In this
work, we use a Genetic Algorithm (GA) to find a near opti-
mal solution to this intractable problem. Genetic Algorithms
are a family of computational models inspired by evolution.
These algorithms encode a potential solution to a specific
problem on a simple chromosome-like data structure and ap-
ply recombination operators to these structures in such a
way as to preserve critical information (Whitley 1994). Ge-
netic algorithms simulate natural selection through the in-
corporation of a survival-of-the-fittest approach. A popula-
tion is seeded with individuals that represent initial guesses
at a good solution. Then, a crossover process combines ge-
netic material of existing individuals to create a new gener-
ation of solutions (Dwivedi et. al. 2012). As part of the com-
bination process, there is typically the chance of a mutation
event which simulates mutations in real chromosomes.
These mutations serve to widen the search of the solution
space.

A Genetic Algorithm for Lock Configuration
Optimization

The performance of the Genetic Algorithm for lock design
depends mostly on the encoding scheme and the choice of
genetic operators, including the initial population, the selec-
tion, the crossover, and the mutation operators. Before in-
troducing the details of these operators, we first describe the
lower bound for the PTSP problem that will be used to de-
termine a solution’s fitness.

Lower Bound for PTSP Solution
The thief’s goal is to find an a priori tour through all the
words that minimizes the expected number of operations,
where an operation is defined either as a turn of the dial one
position or an attempt to open the lock. The idea behind the
lower bound for the PTSP problem is that the a priori tour
must change one or more dials to move to a new word and
then attempt to open the lock.

To calculate this lower bound, we start by averaging the
minimum distance between a word and the two closest

12707

words. Let 𝑑𝑖 be the 𝑖𝑡ℎ distance in this list when ordered
from least to greatest. This ordering represents the order in
which the thief could visit the words, with the idea that the
thief would start by trying words that are close together be-
fore moving on to words that require more operations to
reach.

We use the average because for each word we must move
to the word, and then we must also move away from the
word. Note that we make an adjustment to the last entry in
this list of possible words, 𝑑𝑛. Rather than taking the aver-
age of the distances to two closest words, we use just the
distance to the closest word. The rationale is that the thief
will not need to move off of the last word in the list.

After sorting the list of distances, we must add one to each
distance to simulate the thief attempting to open a lock.
Thus, the fitness of a solution S, 𝐹(𝑆), is estimated as:

𝐹(𝑆) =

1

𝑛
∑ ∑ (𝑑𝑖

𝑛
𝑖=1 + 1)𝑛

𝑖=1 (1)

To better illustrate this fitness estimation, consider the

following example. Assume that the list of words is: BAKE,
CAKE, FAKE, FORK, FORM, and FORT. Now, assume
the lock has a configuration as shown in Figure 2, with an
starting code of BZKE. The optimal PTSP will visit the
words in the order given by the list above. First, the thief
will change the combination of BZKE to BAKE and try to
open the lock, requiring two operations. Next the thief will
change the combination from BAKE to CAKE requiring
two more operations, and a running total of 4 operations.
Working through the remaining words, the running number
of operations for each word of 2, 4, 6, 10, 12, and 14. Sum-
ming these operations and dividing by 6, yields a fitness of
7.92 expected operations.

Tables 1 and 2 show the calculation for the lower bound
of the fitness of this solution. We start by taking the average
of the two closest words for each possible word in the list,
as shown in Table 1.

Next, we sort these distances and add one to each value
to calculate the list of sorted distances. Note that after we
sum the distances running total, we make an adjustment for
the last entry in the list, 𝑑𝑛, since we do not need to move
from the last word tried. Therefore, for this specific exam-
ple, 𝐹(𝑆) = 7.75.

Solution Representation
A lock in the GA is encoded as lists of symbols, one per
wheel, as shown in Figure 3. The symbols can be either let-
ters or a blank space. The order of the letters corresponds to
the order of the letter in the wheels. All of the mutation and
crossover operations, described later, will ensure that the
symbols on a wheel are unique.

Wheel 1 Wheel 2 Wheel 3 Wheel 4
PTNSBCADRM UEOCSRAIMP TRAMNCDSEP A SCDEOTPI

Figure 3. Lock representation of a four-wheel lock used in
the GA code.

Initializing the Population
Setting the initial population for the GA is crucial to the
speed and the convergence of the algorithm (Abdoun,
Abouchabaka, and Tajani 2012). In our approach, the initial
group of lock configurations is set by three initialization op-
erators. The operators are chosen uniformly at random, and
each creates a single configuration. This process is repeated
until the population reaches a size of 40 solutions.

Initialization Based on Dictionary Words. This initializa-
tion operator chooses a random word from the dictionary
that is equal to or less than the length of the number of
wheels a lock has. It then adds each letter of that word to
each wheel of a lock depending on the position of the letter
in that word. This heuristic is repeated until every wheel of
the lock is filled to their max letter size, in our case 10 letters
per wheel.

Initialization Based on Letter Frequency. This initializa-
tion operator simulates a raffle process where the letters are
chosen with a probability equal to the frequency that the let-
ter appears in the dictionary. When choosing a letter for the
𝑖𝑡ℎ wheel, the frequency for a letter is the proportion of

Wheel 1 Wheel 2 Wheel 3 Wheel 4
BCFX AOXZ KRXZ EKMT

Figure 2. Simple lock configuration.

Word Nearest Words
Ave. Distance to Nearest

Words
BAKE CAKE FAKE 1.5
CAKE BAKE FAKE 1
FAKE CAKE BAKE 1.5
FORK FORM FORT 1.5
FORM FORK FORT 1
FORT FORM FORK 1.5

Table 1. Distances to nearest words for each word in
the word list.

Sorted 𝑑𝑖’s Distances Running Total
2 2
2 4

2.5 6.5
2.5 9
2.5 11.5
2.5 14

Sum of Distances: 47
Adjustment: 0.5

𝑭(𝑺): 7.75

Table 2. Calculation of the lower bound for the fitness.

12708

words where this letter is used as the 𝑖𝑡ℎ letter in a word
whose length is less than or equal to the number of dials on
the lock.

Initialization Based on Random Letter Selection. This in-
itialization operator is a simple random letter selector. The
operator simply chooses letters or the space at random until
the lock dials are filled. The operator makes sure that the
letters are not repeated in a wheel.

Selection
A selection algorithm selects solutions to combine to create
a new solution in the next generation. While there are many
different types of selection, we will use the most common
type, roulette wheel selection (Abdoun, Abouchabaka, and
Tajani 2012). In roulette wheel selection, the individuals in
the population are given a probability of being selected to
generate chil-dren for the next population, that is directly
proportion-al to their fitness. Therefore, in this approach, in-
dividuals who have high values of the fitness function are
more likely to be chosen among the individuals to generate
the children. After selecting two of these solutions, called
parents, two children are then created by applying a crosso-
ver algorithm to the parents.

Crossover
After a pair of parents are selected from the pool, the cross-
over operation creates two new solutions based on these par-
ents. Our approach uses a modified ordered crossover
method (OX) as the crossover operator, an approach that has
proven to be one of the best approaches for the TSP (Abdoun
and Abouchabaka 2011).

This modified order crossover method is used when the
problem is order based, like the problem in our research.
Given two parent chromosomes, two crossover points
(called crossover sites) are selected at random, partitioning
the solutions into a left, middle, and right portion. The or-
dered two points crossover sites behave as follows: child 1
inherits its left and right section from parent 1 and its middle
section is determined by the middle section in parent 2. The
same thing happens to child 2 but with parent 2 being the
left and right sections instead, and the middle section deter-
mined by parent 1.

Figure 4. OX Crossover operator using only one wheel.

Figure 4 shows an example of the crossover algorithm
OX with only one wheel. First, the crossover points are se-
lected, which are at the fourth and seventh letter, in the ex-
ample. The letters are then copied from a corresponding par-
ent, at and before the first crossover point. and at and after
the second crossover point.

The modification to the OX algorithm then follows. Ra-
ther than simply copy the middle section from the other par-
ent, the operator starts copying letters from the other parent
after the first crossover point, skipping any letters that have
already been selected. We wrap around to the beginning of
the wheel when looking for this next letter, if necessary. For
example, in Figure 4, we cannot start by copying the letter
C to child 2 because a C already appears in the wheel. The
same is true of the letter F. Instead, we skip these letters and
start copying from parent 1 at the G. Similarly, for child 1,
normally the letter I would appear as the sixth letter. How-
ever, since it already appears in the wheel, we skip it, adding
the N and the S from parent 2.

The modified OX operator is applied to all of the wheels
in a similar fashion. Different crossover points are chosen,
at random, for each wheel.

Mutation
After creating child solutions, GA’s typically apply muta-
tion operators. Our approach applies five mutation opera-
tions, each one running a random number of times between
0 and 50. The mutation produced by the operator is dis-
carded if it does not yield an improvement in fitness. The
first two mutations are designed to increase the number of
words that can be made with the letters on the lock. The last
three are designed to place the letters in such a way that the
number of operations needed to visit all words increases.

Mutation based on a Random Word. The first mutation
chooses a random letter from a random word in the diction-
ary and ensures that letter is present in the lock. The operator
first picks a wheel and a letter to add at random. Then, with
equal probability, it randomly picks a letter already config-
ured in that wheel and replaces it with the letter chosen be-
fore.

Mutation Based on Underutilized Letters. This mutation
operator first picks a letter and the wheel to insert that letter
at random. Then, it selects the letter that participates in the
fewest number of words in that wheel. The fitness after this
change is then evaluated. If this new solution creates more
words, the operator terminates. Otherwise, the operator will
try to find a different replacement letter for a limited number
of times.

Mutation based on Random Swap. This mutation operator
is a simple mutation that is based on randomness. The oper-
ator first chooses a wheel at random. Then, it picks two let-
ters in that wheel at random and swaps the locations of the
letters.

12709

Mutation to Interleave Common and Uncommon Letters.
This mutation operator attempts to place commonly used
letters next to uncommon letters in the wheels of a lock. This
should increase the distance between words. The operator
first chooses a wheel at random. Then, the operator divides
the letters into two equal subsets, a common subset and an
uncommon subset, based on the frequency that they appear
in words. The operator then chooses a letter in that wheel at
random, with position 𝑖, and checks if it is common or un-
common. Depending on the characteristic of letter 𝑖, the op-
erator checks that the letter 𝑖 + 1 is the opposite. If it is not,
the operator chooses the first letter, of the opposite type, that
it finds in that wheel and swaps both positions of the letters.

Mutation Swapping Replacement Letters. This mutation
operator seeks to separate pairs of letters that occur in words
that differ only in the pair of letters. For example, there are
a large number of pairs of four-letter words that are identical
with the exception of containing either an “a” or an “i” as
the second letter, for example, “tack” and “tick”, or “bake”
and “bike”. This operator would try to place the “a” and the
“i” at some distance away in the second wheel.

To do this, the operator first picks a wheel and a letter in
that wheel at random. Then, the operator goes through all
the words that the lock can create and finds the letter that
appears with this chosen one in the most number of similar
words. The operator then moves this letter to a random lo-
cation between 3 and 5 turns from the original letter.

Insertion
The GA uses elitism when inserting new solutions in the
population. Rather than replacing all parents with new solu-
tions, elitism preserves the best solutions in the population
(Chakraborty and Chaudhuri 2003). The best 40 solutions
are always retained regardless of whether they were present
in the population prior to the generation of new solutions.

Experimental Results
To solve the lock designer’s problem, an experiment was
performed with three goals in mind: to find a lock that will
create the greatest number of words, to find a configuration
of this lock that maximizes the lower bound fitness, and to
compare commercially available locks to this optimal lock
configuration. The experiments found locks that produce us-
able combinations for more than 55% of the possible com-
binations. The results contained some surprises that indicate
that heuristic approaches to lock design are not likely to
yield good results. Moreover, the best lock found by the GA
system greatly outperformed commercial locks with about a
60% increase in both the number of words that are possible
as well as the lower bound on the expected number of oper-
ations needed for a thief to break the lock.

Table 3. Fitness and number of words in every run.

Overview of Results
The GA was designed and implemented in Java. The word
list used in the experiment came from a dataset containing
the 333,333 most commonly-used single words on the Eng-
lish language web, as derived from the Google Web Trillion
Word Corpus (Norvig 2008). This list includes 12,977 3-let-
ter strings and 31,140 4-letter strings. The list is larger than
typical dictionaries because it includes non-word strings that
appear in web pages like “aaaa” and “yolo.” It seems rea-
sonable that these common non-word strings would make
likely combinations chosen by lock owners.

To evaluate the performance of the GA, the algorithm ran
25 times each with a population size of 40 that evolved for
100 generations. Figure 5 plots the fitness of the best solu-
tion in each generation for these 25 runs. The GA performs
consistently, with rapid improvement in early generations
and plateaus to roughly the same fitness in later generations.

Table 3 displays statistics for the central tendencies and
dispersion of the best solution in each of the 25 runs. As seen
in the table, the number of words, which can be made by the
locks, and the fitness of the best solution were consistent
across these optimization runs. This consistency suggests
that the design of the GA does well in avoiding being stuck
in local optima far from the global optima.

Best Lock Configuration
The best lock configuration found in the 25 runs is displayed
in Figure 6. There are some surprising results in this lock
that suggest that simpler optimization approaches to lock de-
sign will not work as well as the GA.

Figure 5. Fitness of best solution every run by generation.

12710

Figure 6. Best lock configuration design found by GA.

First, the lock with the best fitness made 5,539 words, ra-

ther than the maximum of 5,540 found in other runs. Recall
that since the PTSP uses a running total of distances, the ef-
fect of adding one more word is significant since the last
word includes the sum of all previous distances. This result
suggests that the letter selection and placement should be
optimized together, as in the GA system. The best lock con-
figuration may not be found by a simpler, two-phase opti-
mization process, in which a system first selects letters and
then selects ordering of the letters.

Second, we had expected that the final wheel would con-
tain consonants with the space and the letter “e.” However,
in the best lock, other vowels also appeared, and an exami-
nation of the dictionary confirmed that these vowels ap-
peared in a large number of words. The 8 most common con-
sonants in English are r, t, n, s, l, c, d, and p (Keating 2021).
Table 4 shows the change in the number of words after sub-
stituting one of the consonants that was missing with one of
the vowels. Note that the number of words after replacing
one of these vowels with a consonant always decreased.

The third surprise was that we expected that vowels in a
wheel would be better to be separated, rather than appearing
in adjacent spots. We had assumed that separating these let-
ters would increase the minimum distance between words.
To confirm that the configuration is reasonable, we com-
pared the fitness in the configuration found by the GA with
ones where the vowels were separated. The results, shown
in Table 5, confirm that the configuration produced by the
GA outperforms the other possibilities that were tested.

Comparison with Commercial Locks
Commercial lock design can also be evaluated within the
context of the game design which the GA system is attempt-
ing to optimize. The analysis reveals that under the threat
environment modeled by the game, the GA system’s lock
design significantly outperforms commercial locks.

Figure 7. Number of words possible in each lock

Figure 8. Fitness of commercial lock configurations versus
the fitness of the lock configuration designed by the GA.

Vowel Consonant Words Before
Replacement

Words After
Replacement

A R 5539 5149
A N 5539 5114
A L 5539 5122
I R 5539 5381
I N 5539 5346
I L 5539 5354
O R 5539 5453
O N 5539 5418
O L 5539 5426

Table 4. Effect of replacing a vowel with a common
consonant in wheel 4 of the best lock.

Wheel
Num.

GA
Config-
uration

Alter-
nate
Config-
uration

Fitness
Before
Change

Fitness
After
Change

1 AIMPS
CRLND

AMPSC
IRLND 7567.246 7545.232

2 AIRSM
PCEUO

ARISE
MUPOC 7567.246 7505.651

3 AIMTC
PRNSD

AMTCP
IRNSD 7567.246 7542.555

4 AS PC
OTEDI

AS PO
CETID 7567.246 7542.918

Table 5. Effect of rearranging letters in the GA lock.

12711

As shown in Figure 7, the lock designed by the GA makes

56.7% more words than the best commercial lock. Where
the commercial locks are able to make words with about 1/3
of the possible combinations, the GA designed lock makes
words in more than 1/2 of the possible combinations.

The larger number of possible words is a key reason why
the GA designed lock also improves the difficulty of a brute
force attack on the lock, as measured by the fitness. Figure
8 shows that the GA lock increases the expected length of
the PTSP tour required to break the lock by 77.4% over the
commercial locks, on average. Thus, under the threat envi-
ronment considered by this paper, the GA lock is signifi-
cantly more secure than the commercial locks in the market.

Limitations
There are limitations in the analysis of the context of the
game used to evaluate lock security. These limitations in-
clude assumptions about the likelihood that words will be
chosen as combinations, the threat environment that locks
face, and other important design criteria that are not incor-
porated in the game structure.

First, the word list chosen for this study may not reflect
commonly chosen passwords and within a word list, not all
words will be equally likely to be chosen. If these non-uni-
form probabilities were incorporated, the PTSP tour would
likely try to visit more common combinations first.

In addition, a brute force attempt to break the combination
may not be the most likely attack on these locks. Other
mechanisms including cutting the lock or picking the lock
may be more likely real-world scenarios.
Finally, there are certainly other design considerations that
are important for these locks. For example, designers may
want to be able to make certain words with the lock. In the
commercially available locks, for example, some are able to
make the words shown in Figure 1, including “runs,” “fast,”
“bike” or “loop.” Other than “runs” which is a possible word
in the GA lock configuration, these words appear to have
been chosen not because their letters can be used for many
other words, but rather for marketing reasons.

Conclusions and Future Work
In this paper, we analyzed the security of locks by formulat-
ing a game played between a lock designer and a thief. In
the game, the thief will use an a priori tour for the PTSP
problem to create a brute force strategy to find the combina-
tion. We presented a genetic algorithm (GA) system that at-
tempts to maximize the time required for this attack.

The GA system produced significant improvements over
commercial lock designs, in the context of this game. The
number of words that could be created by the GA-designed

lock is 56.7% more than commercial locks, and the diffi-
culty of a brute force attack increased by 77.4%.
 Future work, planned by the authors, includes expanding
the study to larger lock sizes and addressing some of the
limitations of the current study. In addition to four-letter
locks, five-letter locks are also commonly available. The ad-
dition of one more wheel increases the complexity of the
problem by 27 choose 10, increasing the number of possible
configurations by a factor of more than 8 million. The au-
thors would also like to explore the effect of assigning non-
uniform probabilities to the likelihood that a combination is
chosen. Currently, most of the transitions between combina-
tions in the best PTSP tour would be accomplished with just
1 or 2 operations. Using non-uniform probabilities could po-
tentially require that the thief visits combinations in an or-
dering that increases this number of operations.

References
Abdoun, O., and Abouchabaka, J. 2011. A Comparative Study of
Adaptive Crossover Operators for Genetic Algorithms to Resolve
the Traveling Salesman Problem. International Journal of Com-
puter Applications 31(11): 49-57.
Abdoun, O.; Abouchabaka, J.; and Tajani, C. 2012. Analyzing the
Performance of Mutation Operators to Solve the Travelling Sales-
man Problem. International Journal of Computer Applications
2(1): 61-67.
Bertsimas, D. J.; Jaillet, P.; and Odoni, A. R. 1990. A Priori Opti-
mization. Operations Research 38(6): 1019-1033.
Chakraborty, B., and Chaudhuri, P. 2003. On The Use of Genetic
Algorithm with Elitism in Robust and Nonparametric Multivariate
Analysis. AUSTRIAN JOURNAL OF STATISTICS 32(1-2): 13-27.
Christofides, N. 1972. Technical Note—Bounds for the Travel-
ling-Salesman Problem. Operations Research 20(5): 1044-1056.
dio.org/10.1287/opre.20.5.1044.
Dwivedi, V.; Chauhan, T.; Saxena, S.; and Agrawal, P. 2012. Trav-
elling Salesman Problem using Genetic Algorithm. National Con-
ference on Development of Reliable Information Systems, Tech-
niques and Related Issues (p. 25).
Jaillet, P. 1988. A Priori Solution of a Traveling Salesman Problem
in Which a Random Subset of the Customers are Visited. Opera-
tions Research 36(6): 929-936.
Keating, B. 2021. The frequency of the letters of the alphabet in
English. https://www3.nd.edu/~busiforc/handouts/cryptog-
raphy/letterfrequencies.html/. Accessed 9/6/2021.
Liu, Y.-H. 2007. A Hybrid Scatter Search for the Probabilistic
Traveling Salesman Problem. Computers & Operations Research
34: 2949-2963. doi.org/10.1016/j.cor.2005.11.008
Marinakis, Y., and Marinaki, M. 2010. A Hybrid Multi-Swarm
Particle Swarm Optimization algorithm for the Probabilistic Trav-
eling Salesman Problem. Computers & Operations Research
37(3): 432-442. doi.org/10.1016/j.cor.2009.03.004
Norvig, P. 2008. Natural Language Corpus Data: Beautiful
Data. http://norvig.com/ngrams/. Accessed 9/7/2021.
Whitley, D. 1994. A Genetic Algorithm Tutorial. Statistics and
Computing 4: 65-85.

12712

