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Abstract
Auto battlers are a recent genre of online deck-building
games where players choose and arrange cards that then com-
pete against other players’ cards in fully-automated battles.
As in other deck-building games, such as trading card games,
designers must balance the cards to permit a wide variety of
competitive strategies. We present LUDUS, a framework that
combines automated playtesting with global search to opti-
mize parameters for each card that will assist designers in
balancing new content. We develop a sampling-based approx-
imation to reduce the playtesting needed during optimization.
To guide the global search, we define metrics characterizing
the health of the metagame and explore their impacts on the
results of the optimization process. Our research focuses on
an auto battler game we designed for AI research, but our ap-
proach is applicable to other auto battler games.

1 Introduction
Auto battlers are a new and wildly popular genre of online
game. Auto Chess released in January of 2019 (Drodo Stu-
dio 2019), and within that same month was regularly seeing
70,000 concurrent players (Tack 2019). By June, Dota Un-
derlords and Teamfight Tactics were among the most popu-
lar online games in the world (Grayson 2019). Since then,
entries like Hearthstone: Battlegrounds (Blizzard Entertain-
ment 2019), Fire Emblem Heroes: Pawns of Loki (Nintendo
Mobile 2020), and Storybook Brawl (Good Luck Games
2021) have further refined the genre.

In an auto battler, a number of players (typically eight)
compete to build the best lineup of cards through a number
of rounds. Each round consists of a deck-building phase and
a battle. In the deck-building phase, each player improves
their lineup by selecting cards from a shared pool and ar-
ranging their order. In the battle phase, two players’ lineups
compete automatically. Players who lose too many of these
battles are eliminated. Play proceeds in rounds until all but
one player are eliminated. The remaining player wins.

Auto battlers are in many ways similar to deck-building
collectible card games like Magic: the Gathering (Wizards
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of the Coast n.d.b), Pokémon (The Pokémon Company n.d.),
and Yu-Gi-Oh! (Konami n.d.). In collectible card games, a
battle between two decks is called a game. Because it en-
compasses and affects multiple games, the deck-building
process is called the metagame.

Deck-building games and metagames are often described
as being either healthy or unhealthy. The health of a
metagame depends on a variety of factors, of which we
highlight diversity. Diverse metagames are those where
many different decks/lineups coexist with similar overall
win rates.

Metagame balance in deck-building games poses a chal-
lenge for game designers because a relatively small num-
ber of cards are combined to form a large number of pos-
sible decks, and these decks are paired into an even larger
number of possible match-ups. Magic: the Gathering relies
on human playtesting in advance of releasing a set (DeTora
2017), but human playtesting before release has repeatedly
failed to identify card designs or sets that lead to unhealthy
metagames. Even when it does successfully identify and fix
unhealthy metagames, human playtesting requires signifi-
cant labor and time from a number of skilled players.

In addition, digital card games like Hearthstone collect
and analyze data after release from consumer play (Zook
2019). While inexpensive, this approach is insufficient on its
own because it requires a significant number of consumers
to play in unhealthy metagames in order to identify prob-
lematic designs.

Healthy and diverse metagames are desirable because
they lead to more varied, and therefore more enjoyable, bat-
tles. In a homogenous metagame, any two battles are rela-
tively similar. This reduced novelty bores players, who may
then reduce their involvement with the game and purchase
fewer products. Also, unsatisfied players often share their
opinions on social media, discouraging new players from
joining the game.

For example, Magic: the Gathering’s set Throne of El-
draine was criticized for containing a number of overpow-
ered cards. Decks that contained these powerful cards re-
liably beat decks without them. High-level players quickly
converged on a small number of deck designs that best uti-
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lized the powerful Throne of Eldraine cards. On at least one
occasion, a tournament was canceled due to lack of interest
(Triske 2019). Wizards of the Coast, the company respon-
sible for Magic: the Gathering, banned a total of six cards
from Throne of Eldraine in response (Wizards of the Coast
n.d.a; Duke 2019, 2020b,a). Even after the bans, high-profile
professional players have complained on social media about
Throne of Eldraine’s impact on the Magic: the Gathering
metagame (Scott-Vargas 2020).

In this paper, we introduce LUDUS, a framework to re-
duce the cost of playtesting without exposing consumers to
unhealthy metagames by automating the balancing process.
Section 2 discusses other research related to auto battlers
and deck-building metagames. Section 3.1 develops an auto
battler game we designed to facilitate artificial intelligence
(AI) research and presents an algorithm that efficiently and
accurately approximates the average win rates of all the line-
ups in a metagame. Section 3.2 defines three metrics that
evaluate the diversity of a metagame, and we theorize how
game designers could define more precise metrics for their
own games. Section 3.3 explains how we use a genetic al-
gorithm to balance a metagame. Section 3.4 explores how
game designers can use LUDUS and these metrics for in-
sights about their current card designs. Section 4 presents
experimental results evaluating the sampling-based approxi-
mation described in Section 3.1 and the genetic optimization
described in Section 3.3. Section 5 reviews the implications
of our experimental results. Section 6 considers possible ex-
tensions to our work.

2 Related Works
As the auto battler genre is still new, we were only able to
find one other work that specifically addresses the use of AI
in their design. Xu et al. (2020) focused on autonomously
identifying the best lineups that players can construct given
the available cards, game rules, and lineups that the game’s
designers expect to be played the most. 1. In a two-step pro-
cess, their method first simulates play between randomly
generated lineups and the designers’ expected lineups to cre-
ate a training dataset for a neural network—the model learns
a mapping between a given lineup and its estimated win
rate against the designers’ expected lineups. In the second
step, a genetic algorithm searches for lineups that optimize
the learned win rate function under various constraints that
define lineup construction rules throughout the auto battler
game. Constraints account for drafting additional cards be-
tween rounds of play, which are not elements of our auto
battler game (see Section 3.1 for a description).

Game designers may use the optimized lineups to evaluate
whether the cards are balanced and, if not, which cards need
revision. Our method instead revises the cards directly, opti-
mizing the viability of the set of possible lineups that players
can construct. This alters the initial efforts of the game de-
signers to focus on the rules and some card templates with-
out committing to specific grounded card instances. Because
the templates are lifted representations of the actual cards, it
is more difficult for designers to identify which lineups are

1Their specific auto battler uses ‘piece’ instead of ‘card.’

expected to be common in the metagame. However, after our
approach provides suggestions for grounded card instances,
game designers can apply Xu et al.’s methods for a deeper
analysis of the suggested card designs. If the designers have
some expected lineups based on the templates alone, then it
should be possible to combine our methods. The informa-
tion available to the game designers would enable them to
explore not just which lineups are considered the best, but
also how the best lineups change for various card revisions.

Many games that support competitive play over the in-
ternet collect data about what and how people are playing.
Game designers can take advantage of various data science
approaches to find trends in the logged data that inform them
about how to balance the game (Nguyen, Chen, and Seif El-
Nasr 2015). In the virtual collectible card game Hearthstone,
clusters of similar deck compositions implicitly describe
archetypes that are currently popular in the metagame. De-
signers can use this information to decide if some archetypes
are too common (implying they might be too powerful) and
respond through updates to card descriptions, releasing new
cards that counter the overused archetypes, or releasing new
cards that support the underused archetypes (Zook 2019).
This organizes human-operated playtesting at macro-scale
where designers can iterate on their game between updates.

Because human-operated playtesting is expensive
resource-wise and rarely exhaustive enough to identify all
points of concern, automating the playtesting process can
speed up the number of games played and discover edge
cases humans might not consider. For deck-building games
where the players have agency and outcomes are nondeter-
ministic (shuffled decks, random outcomes of effects, etc.),
the space of possible deck combinations and game states can
be immeasurable. Following in the footsteps of DeepMind’s
work on AlphaGo (Silver et al. 2016), Stadia trained a
deep learning model through many games of self-play in
order to develop a function that could evaluate the quality
of a game state for a deck-building game (Kim and Wu
2021). Their automated game-playing agent then competed
against itself with designer-constructed decks in order to
compare the overall decks’ performance, accounting for
the nondeterministic outcomes through many games as
statistical samples. A game designer may manually inspect
the outcomes of all the matches to determine whether any
revisions to the cards are necessary.

Bhatt et al. (2018) investigated the deck-building aspect
of Hearthstone with genetic algorithms evolving the decks to
optimize defeating a specified opposing deck. Their game-
playing agents used a greedy, myopic search algorithm as an
experimental control while the evolving decks were the ex-
perimental cases. The resulting evolutionary paths yield in-
sights into the diversity of the metagame. In contrast, Zook,
Harrison, and Riedl (2019) altered the parameters of Monte
Carlo Tree Search to study how different types of players
performed with fixed decks in their own collectible card
game. It revealed balance issues from the perspective of the
game’s rules, such as a clear advantage to the player with the
first turn. To investigate more specific scenarios, Jaffe et al.
(2012) enabled designers to specify restrictions on player
parameters and available cards. Their simulator ran multiple
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games and summarized the results with respect to checking
various features of the win percentages and play logs. Chen
and Guy (2020) considered both simulating multiple games
and training a deep learning model to assess the metagame
as they procedurally generated new cards using grammars.

3 Methods
To achieve the goals outlined in the introduction, LUDUS
contains an auto battler game with a number of special cards
with extra mechanics and a basic ‘vanilla’ card that only en-
gages in standard combat without extra mechanics. The de-
tails of these cards and their mechanics are explained below
in Section 3.1. The health and attack values of all cards can
be adjusted as well as some values pertaining to the extra
mechanics (such as how much damage to deal to an oppo-
nent’s card when a card dies). Multiple cards of the same
type that have different attack, health, or other values can be
considered in the same game.

Beyond the auto battler itself, LUDUS also contains an
optimization framework to find configurations of available
cards that are balanced, fair, and elicit desired play expe-
riences. These criteria are obviously quite subjective; so
game designers can easily plug new metrics into the exist-
ing framework as they develop new ways of capturing their
goals and preferences describing the metagame. This paper
explores a few options as well.

3.1 Playtesting Simulator
To serve as a data source for quantitative analysis, we create
a playtesting simulator for an original auto battler game we
designed. This simulator is designed for research purposes,
allowing the user to create cards with new mechanics and
run tournaments between arbitrary lineups.

All cards are equally available to all players, and there
are no restrictions on the number of copies of a card al-
lowed in players’ lineups or in the entire game. Some auto
battlers have a drafting process in which cards are selected
or purchased from a pool, but drafting and/or deck-building
take different forms across different games (Blizzard Enter-
tainment 2019; Good Luck Games 2021; Nintendo Mobile
2020). We do not explore variants of these processes in this
paper, but we will consider them in future work.

Card Definition Cards have positive integer statistics in-
cluding health points, attack, and parameters pertaining to a
special mechanic. In our game, such special parameters in-
clude the following:

Explosion Damage When the card dies, it damages each of
the opponent’s cards by this many health points.

Heal Amount Prior to entering combat, the card restores
this many health points to its player’s rightmost card

Attack Growth Per Hit When the card takes damage, its
attack increases by this many points.

Explosion Heal When the card dies, it heals each of its
player’s other cards by this many health points.

Heal Donation Percent When the card would be healed, it
instead restores this many percent of the health points

to itself and donates the remaining health points to its
player’s other cards evenly.

Armor Points The card starts with this many armor points.
When the card would be damaged, it instead loses an
armor point. When the card has zero armor points, it is
damaged normally.

Damage Split Percent When the card would be damaged,
it instead receives this many percent of the damage to it-
self and splits the remaining damage evenly to its player’s
other cards.

Middle Age Prior to entering combat, the card increases its
attack by 1 if it has not participated in this many com-
bat phases. After this many combat phases, the card de-
creases its attack by 1 before entering combat.

Target Age When the card dies, if it participated in this
many combat phases, it deals this many damage points
to each of the opponent’s cards. If the card participated
in fewer than this many combat phases, it heals each of its
player’s other cards by health points equal to the number
of combat phases in which the card participated.

Detonation Time When the card has been healed or dam-
aged this many times, the card and its opponent’s card
both die.

Other card mechanics without parameters include the
copying the attack of the opponent’s cards (morphing ene-
mies) and swapping its health points and attack whenever its
attack is greater than its health points (survivalist).

Match Procedure Gameplay proceeds as follows in the
simulator:

1. Each player in a tournament selects an ordered list of
cards to be their lineup.

2. Prior to combat, arrange the lineup’s cards left-to-right.
3. Each combat phase pits the leftmost surviving card of

each player against each other. The cards take damage
equal to their opponent card’s attack. Cards with 0 or less
health points die, and surviving cards are rearranged to be
the rightmost card of their respective lineups.

4. Repeat the combat phase until one or fewer players has a
surviving card or the maximum number of combat phases
has been reached. If both or neither players have at least
one surviving card, the game is a draw. Otherwise, the
player with a surviving card wins.

Win Rate Approximation We run a round-robin tour-
nament where each lineup plays one match against every
other lineup. Unfortunately, for n lineups, this results in
n(n − 1)/2 = n2/2 − n/2 matches. This quickly becomes
prohibitively large to simulate. We developed a sampling-
based approximation that runs a subset of the games in order
to estimate the win rates of cards and lineups. It randomly
partitions the lineups into groups of uniform size and runs
round-robin tournaments within these groups. For a group
tournament with k groups and n total lineups, this results in
an upper bound of k · (n/k)(n/k − 1)/2 = n2/(2k)− n/2
matches in the case where n is divisible by k.
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3.2 Metrics
Quantitative measures of metagame health are needed to
guide card statistic optimization. We present metrics built
upon the output data of the playtesting simulator.

The playtesting simulation outputs a data vector v, the
lineup payoff vector. Each entry vi ∈ [−1, 1] represents the
average payoff of the lineup at index i during the last round
of playtesting in the optimization process. A payoff of 1 in-
dicates a win. A payoff of 0 means a tie, and a loss results in
a payoff of -1. The average of these payoffs over the course
of the simulated tournament for a lineup make up the entries
of v.

We then transform v into another vector of length n that
maps a card to the average win rate of the lineups in which
the card appears. This vector w, the card win rate vector,
has entries wj ∈ [0, 1], the average win rate of the lineups in
which the card at index j appears. We present three metrics
that evaluate the uniformity of this distribution of win rates
among the cards.

Each of the following metrics operate on the card win rate
vector.

Per-card Payoff

PCP =
1

n

∑
j

|payoff(wj)|2 (1)

Since average payoffs are equal to 0 when a lineup a card
appears in wins as many matches as it loses, this is a metric
to minimize if we want to punish overly powerful or terrible
cards. The squared term disproportionately attacks outliers.

Standard Deviation Metric

SDM =

√√√√√ 1

n

∑
j

∣∣∣∣∣∣wj −

 1

n

∑
j

wj

∣∣∣∣∣∣
2

(2)

Minimizing standard deviation of the win rates may avoid
cards with drastically higher or lower win rates compared to
other cards.

Entropy Metric

EM = −
∑
j

wj∑
j wj

log

(
wj∑
j wj

)
(3)

When the entropy of the win rates is maximized, we ap-
proach a uniform distribution of win rates over the cards.

Other Metrics The LUDUS framework is flexible; re-
searchers and designers alike may develop their own met-
rics corresponding to their own ideas of what constitutes a
healthy metagame. For example, a game designer may know
from historical data that a certain distribution of win rates
over cards or lineups correspond to a period of celebrated
parity in the metagame. The designer could conceivably use
the Wasserstein distance or Kullback-Leibler divergence be-
tween this historical distribution and another distribution as
a metric. Minimizing this metric might maintain similar lev-
els of parity through future iterations of card releases. Met-
rics could also evaluate other measurable elements like av-
erage turns per match.

Health
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k

Bruiser Attack Versus Grow on Damage Health

Figure 1: Heatmap showing how changes in the attack of
the bruiser card and the health of the grow-on-damage card,
while all other card parameters remain fixed, affect the stan-
dard deviation metric.

3.3 Optimization
We use the PyGAD python library (Gad 2021) for genetic
algorithms. This searches for the optimal values of spec-
ified parameters, which may include health points, attack,
and special parameters, with respect to the chosen metric.
For our experiments, we use the standard deviation metric.

We constrain the genetic algorithm to consider integer
values between 1 and 10, inclusive. While hyperparameter
tuning may have yielded better results, we chose to run the
genetic algorithm with 8 solutions and 4 parents mating per
population for 32 generations in each experiment.

3.4 Qualitative Analysis
Another way to understand the landscape of the metagame
is through more qualitative methods. We look at two differ-
ent ways of plotting data about the game results that give
insights into the health and stability of the metagame.

The first plot sweeps over two variables, typically of the
same card, although not necessarily. This gives a visual rep-
resentation of the metagame sensitivity under variations of
a configuration, which can lead to some interesting insights
about the relationships between cards.

Take, for example, the plot in Figure 1 of the value of the
standard deviation metric given various values for the attack
of the bruiser card and the health of the grow-on-damage
card. The bruiser card is a vanilla card with a high attack (al-
though variable in this situation) and one health point. The
grow-on-damage card has one attack growth per hit. Initially
this card has one attack, and in this situation has a variable
amount of health. If the grow on damage card is able to con-
sistently become a powerful threat, it can become too strong
and a necessity for high-level play, leading to an unbalanced
metagame.

In the figure, we can see that configurations in the upper
left corner, where the attack of the bruiser is greater than the
health of the grow on damage card, tend to be much more
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Figure 2: Distribution of win rates before optimization.
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Figure 3: Distribution of win rates after optimization.

favorable than the configurations in the lower right corner,
where the opposite is true. This evidence supports the in-
tuitive idea that the bruiser’s high attack is a good counter
to the grow on damage card because the bruiser card can
quickly remove the grow on damage card before it has had
enough interactions to grow its damage to a large number.
This kind of information can be quite useful to a game de-
signer, who can see very clearly that the inclusion of a high-
damage card can improve the metagame dramatically if the
grow on damage card is found to be too powerful.

The second plot is a histogram of the lineup win rates af-
ter running a tournament amongst all possible lineups. The
resulting distribution can have features that may be informa-
tive to game designers. For example, examine the difference
between the distributions in Figures 2 and 3 from tourna-
ments using two configurations of the same card parameters.

Given playtesting input from actual players and historical
data from other successful metagames, game designers can
interpret the changes new cards have brought and implement
changes to the game or metrics for optimization that will
improve the experience of human players.
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Group Versus Round Robin Tournament Errors

Figure 4: Absolute value of the difference in win rate be-
tween a group tournament of varying size and a full round-
robin tournament of 1,728 possible lineups.

3.5 Experiment Design
Our experiments share common phases.

1. Build lineups. We generate a set of cards and their asso-
ciated attack, health points, and special parameters. De-
pending on the experiment, a subset of these parameters
may vary between simulations during the optimization
process. From this set of cards, the lineups are permuta-
tions of 3 cards from the set, allowing for duplicates.

2. Run tournaments. This will be either be a group or a
round-robin tournament as described in Section 3.1.

3. Optimize. These tournaments are run within each itera-
tion of our genetic algorithm to produce a metric estimat-
ing the best possible health of the metagame with respect
to configurations of the card parameters.

4 Results
We explore applications of LUDUS to problems that game
designers commonly face.

4.1 Group Versus Round-Robin Tournament
The first experiment investigates the efficacy of our
sampling-based approximation in Section 3.1. To do this, we
compare the win rates of a complete round-robin tournament
(every combination of lineups played) with the distribution
of win rates over a 16-fold tournament of randomly parti-
tioned lineups into groups of various sizes, playing every
combination of the lineups within those groups.

Figure 4 compares the win rates of each lineup in the
group tournament versus the round-robin tournament, and
we can see that at a group size of 256, the mean error be-
comes negligible (about 0.0382). We use this group size in
the other experiments rather than a round-robin of all 1,728
lineups.

4.2 Optimizing Cards without Special Mechanics
The next experiment optimizes a set of four ‘vanilla’ cards
with no extra mechanics. We expected that the ‘optimal’
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solution in terms of the standard deviation metric would
have four identical cards because the interchangeable cards
should have zero standard deviation in the win rate. Due to
the limited number of generations in our genetic algorithm,
we recognized that there was no guarantee it would find this
solution. From a game design perspective, a less-optimal so-
lution seems more interesting in this case as a game with
only a single card is obviously uninteresting. We wanted to
see what ‘almost-optimal’ solutions appear for this setup.
This observation also illustrates a case where the standard
deviation metric fails to fully capture the qualities we wish
to optimize in our game.

The results of this experiment illustrate a different failure
case of our standard deviation metric that we did not pre-
dict. The genetic algorithm quickly found the solution (5/3),
(5/4), (8/3), (8/1) where (a,b) indicates a card with a attack
and b health points. This solution had the optimal zero stan-
dard deviation—why? Any pairing of these cards will result
in both cards killing each other simultaneously. Thus, every
game ends after one round of combat phases in a tie, and
there is no variance in win rates amongst the lineups.

4.3 Optimizing Only Special Mechanics
The third experiment optimizes only the special mechanic
parameters of twelve cards. We assigned each card an in-
tuitive value for its attack and health, which a game de-
signer might do for initial context. LUDUS then optimized
the parameters for the special mechanics of these partially-
designed cards. We were interested to see how it optimized
under these constraints and how impactful the special me-
chanics would be for the overall balance. Table 1 describes
the cards used in this experiment. The optimizer improved
the win rate standard deviation from 0.0751 to 0.0589.

4.4 Optimizing All Parameters
After fixing the attack and health to focus solely on the spe-
cial mechanics, the next experiment tunes the attack, health,
and special mechanics all at once. To reduce the huge di-
mensionality of this experiment, we selected only five of the
twelve cards to optimize. They are listed in Table 2.

The optimizer improved the win rate standard deviation
from 0.0704 to 0.0584. This minimum is approximately the
same as the one achieved in the previous experiment, modi-
fying only the values of the special mechanics. One impor-
tant observation we made is that the optimizer was still mak-
ing good progress in the final generations of both our exper-
iments. This indicates that these might not be minima, and
compute time for additional generations could continue to
improve the card designs.

4.5 Optimizing After a Set Rotation
Another common scenario designers of deck-building
games encounter is releasing a new set of cards that main-
tain the compatibility, fairness, and competitiveness with the
previously released cards. To apply LUDUS to this problem,
we took the set of five cards from Section 4.4 with their op-
timized solution as the first set of cards released. Next, we
selected five additional cards, described in table Table 3, and

optimized them alongside the first set fixed at the solution
found previously—this is ten cards with variable parameters
for only the second set of cards.

The optimizer improved the win rate standard deviation
from 0.0591 to 0.0541. This is a comparatively smaller im-
provement than the previous experiments, but the initial state
was already in much better condition than any of the previ-
ous experiments. This is interesting because it could indicate
that adding new cards to an already well-balanced set may
not disturb the balance as much as one might expect.

5 Discussion
We can see that the LUDUS framework yielded some very
useful results from a game design perspective. Given a
small, yet representative, set of cards, our methods were able
to find more balanced configurations for cards that should
create a far more enjoyable auto battler game to play.

We also implemented an approximation method that con-
siderably reduces the computation time necessary to evalu-
ate configurations during optimization, especially for large
card sets. This method randomly breaks the tournament into
smaller groups that only compete within themselves. Our
empirical results indicate that under most circumstances, the
approximations are close enough to the complete tourna-
ment to produce satisfactory optimization results.

We applied the LUDUS framework to some standard prob-
lems game designers face and found promising results. No-
tably, the algorithm successfully optimized cards under var-
ious constraints from partially-designed cards to expansions
of previously optimized card sets.

Beyond the immediate results of this paper, we con-
tributed an auto battler game and its associated tools. Given
the recent nature of this genre, we believe this is an impor-
tant contribution that will aid future research in the area.

6 Future Work
The genre of auto battlers is very young, and our research
only explores a narrow slice of questions in this new area.
We discuss problems that extend our current work.

6.1 Other Auto Battler Features
Unlike our game, some auto battlers have players iteratively
build their lineup between battles by purchasing cards from
an array of options. While our experiments were concerned
with fixed lineups of size 3, LUDUS’s ability to quantify,
qualify, and optimize balance for other deck-building rules
remains to be assessed. We previously only considered the
case where any card may be replaced with any other card to
create a new lineup. However, the purchasing value of cards
is another dimension of their design; future work should
consider comparing lineups that players can build after the
same number of battles and purchasing phases.

In many auto battlers, cards have multiple special me-
chanics that each have variable parameters. Our work only
considers cards with a single mechanic, but this should be
extended to optimize design for such cards.
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Card Attack Health Special Parameter (see Section 3.1) Optimized Special parameter

Explode On Death 2 1 Explosion Damage 1
Friendly Vampire 1 3 Heal Amount 3
Grow On Damage 0 5 Attack Growth Per Hit 4

Heal On Death 1 2 Explosion Health 3
Health Donor 1 4 Heal Donation Percent 3

Ignore First Damage 2 1 Armor Points 1
Morph Attack 0 3 Morphing Enemies N/A
Pain Splitter 2 2 Damage Split Percent 7

Rampage 0 4 Middle Age 8
Survivalist 2 2 Survivalist N/A
Threshold 2 2 Target Age 5

Time Bomb 1 8 Detonation Time 7

Table 1: Variable and Fixed Parameters for the Optimize Special Mechanics Experiment

Card Optimized Attack Optimized Health Optimized Special Mechanic (see Section 3.1)

Survivalist 9 1 N/A
Morph Attack 5 5 N/A

Ignore First Damage 6 8 1
Explode On Death 4 1 3

Vanilla 7 2 N/A

Table 2: List of Cards in the First Set and Their Optimized Solution

Card Optimized Attack Optimized Health Optimized Special Mechanic (see Section 3.1)

Friendly Vampire 7 7 8
Grow On Damage 2 6 9

Heal On Death 3 9 1
Rampage 6 7 5
Vanilla 7 6 N/A

Table 3: List of Cards in the Second Set and Their Optimized Solution

6.2 Simulation Data
All metrics we present are based on the average win rates of
lineups collected from the simulator. This does not take into
account individual lineup-versus-lineup win rates, which are
always 0 or 1 since our auto battler game is deterministic.
One could represent these relations via a domination graph
with lineups as nodes and a directed edge to the lineup that
wins the head-to-head matchup (Goldman et al. 2021), game
matrices with each lineup as a strategy, and more. Further in-
vestigation is required to determine whether perturbations of
card parameters causing a degradation in metagame health
correspond to any changes in these representations. There
are also game design factors to consider besides win rates,
such as game durations and intensity levels.

6.3 Alternative Optimization Methods
Our choice of a genetic algorithm for optimization is some-
what arbitrary. Genetic algorithms can conveniently handle
the familiar integer values of card parameters, unlike other
optimization methods. Gradient- and Hessian-based meth-
ods are difficult to apply to this problem due to our parame-
ters not being differentiable. Had they been applicable, they

would have solved an unmet need of validating the results.

6.4 Human Playtesting
Human playtesting is still required to determine the health
of the metagame as we have not verified to what extent
our metrics correspond to what humans deem as a healthy
metagame. Designers with a historically healthy metagame
can use those parameters to generate reference win rate dis-
tributions over lineups and cards using our LUDUS frame-
work. These distributions can then shape new metrics and
imply their ideal values for parity. Human playtesting feed-
back could also motivate other metrics based on the game-
play experience, such as the number of turns. While this
work is an example of how designers can readily ap-
ply the LUDUS framework, researching human playtesting-
validated results marks an important avenue of future work.
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