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Abstract

Use of technology-enhanced education and online learning
systems has become more popular, especially since the onset
of the COVID-19 pandemic. These systems capture a rich ar-
ray of data as students interact with them. Predicting student
performance is an essential part of technology-enhanced ed-
ucation systems to enable the generation of hints and provide
recommendations to students. Typically, this is done through
use of data on student interactions with questions without uti-
lizing important data on the temporal ordering of students’
other interaction behavior, (e.g., reading, video watching).
In this paper, we hypothesize that to predict students’ ques-
tion performance, it is necessary to (i) consider other learn-
ing activities beyond question-answering and (ii) understand
how these activities are related to question-solving behavior.
We collected middle school physical science students’ data
within a K12 reading platform, Actively Learn. This platform
provides reading-support to students and collects trace data
on their use of the system. We propose a transformer-based
model to predict students’ question scores utilizing question
interaction and reading-related behaviors. Our findings show
that integrating question attempts and reading-related behav-
iors results in better predictive power compared to using only
question attempt features. The interpretable visualization of
transformer’s attention can be helpful for teachers to make
tailored interventions in students’ learning.

Introduction
Predicting students’ performance on question-answering
tasks is a fundamental challenge in education. Accurate pre-
dictions may be used to drive tailored instruction, auto-
mated feedback, and adaptive testing among other things.
Prior research on modeling question-answering has primar-
ily focused using students’ prior question attempts and skill-
specific models such as Learning Factors Analysis (LFA)
(Chi et al. 2011), knowledge tracing (KT) (Corbett and An-
derson 1994), Q-matrices (Barnes 2005), and Item Response
Theory (IRT) (Hambleton, Swaminathan, and Rogers 1991).
These approaches rely on mappings from questions to skills
and a trace of the students past question interactions to as-
sess student abilities and estimate the question difficulties.

Although these approaches have been successful, they
only utilize a small subset of the available information. Mod-
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ern learning environments including intelligent tutoring sys-
tems (ITS) record a rich array of student-system interaction
data including reading, video viewing, and website visits, as
well as more complex self-regulation and problem-solving
actions such as information lookup and goal-setting (Zim-
merman 2000). Recent work has shown that these data can
be utilized to support effective student modeling. Zhang et
al. (Zhang et al. 2017b) for example, showed that incor-
porating additional features in a deep knowledge tracing
(DKT) model, such as time of first attempt, number of at-
tempts, and whether the first action was a hint or question
attempt improved performance. Similarly, Mongkhonvanit
and colleagues tracked students’ video interactions along
with question solving behaviors to predict future question
performance in a massive open online course (MOOCs)
(Mongkhonvanit, Kanopka, and Lang 2019). They did not,
however, consider how these interactions were related to the
students’ question attempts. Although all these approaches
use additional features concatenated to the question features,
none of these studies have considered each action as a tem-
poral event. In one recent study, Choi et al. emphasized the
above-mentioned lack of studies combining both question
solving and interaction behavior. To support incorporation
of fine-grained details of learning, the authors released large-
scale student-interaction data, Ednet (Choi et al. 2020) con-
taining students’ question attempts and other interactions,
such as video watching, choosing a response, or reading a
passage as temporal events.

Our study stems from the same motivation as that of Choi
et al. (Choi et al. 2020). We emphasize that learning is a
dynamic process and performance on a question not only
depends on previous question attempts but also other learn-
ing activities. Consider Figure 1 in this regard. Previous KT
approaches takes account previous question attempts, Q1 to
Q4 to predict a student’s question performance Q5 (Case
1). However, a student may perform other learning activi-
ties within the system, such as video watching, reading, and
highlighting. Case 2 illustrates just such a scenario where
a student performed one highlighting and one annotation
prior to attempting Q5. We hypothesize that to fully un-
derstand students’ performance on a question, we need to
consider (i) that their question-solving and other interaction
behaviors may influence learning and (ii) how these behav-
iors are related to the question attempt. In this study, we fo-
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Figure 1: Motivating Example. Q: Question Attempt, A: An-
notation, H: Highlighting. Previous KT approaches consider
Case 1 scenarios. Proposed approach can handle both Case
1 and Case 2 scenarios.

cus on predicting students’ performance by taking account
of the two criteria above. Our analysis is focused on Ac-
tively Learn (AL), a popular online reading platform used in
US Schools. We investigated how students’ question-solving
behaviors and interactive reading-associated features con-
tribute to their learning. We identified three reading-related
features within the AL system that are likely to relate to
question-solving, namely annotating (Makany, Kemp, and
Dror 2009), highlighting (Winne et al. 2017), and vocabu-
lary lookup (Biemiller and Slonim 2001).

Reading to learn is a complex cognitive process. In order
to understand a written text, a learner first needs to decode
the text into letters, words, and sentences (Perfetti 1985;
Shankweiler et al. 1999). Then, the reader must comprehend
the meaning of these units and connect the meaning with
their prior knowledge (Kintsch and Walter Kintsch 1998;
Kintsch 1988; Magliano et al. 2005). Reading to learn is
an integral skill in domain-specific learning, such as science
(Norris and Phillips 2003). Students in the United States
may not be adequately prepared to engage in this skill. Ac-
cording to the bi-yearly National Assessment of Educational
Progress (NAEP) of 2019, only 37% 8th-graders were pro-
ficient in academic reading. Moreover, this percentage was
below that of 2017 1. This may be due to the fact that stu-
dents do not get enough opportunities to learn and practice
reading at school (Gomez, Herman, and Gomez 2007).

Digital reading platforms can help to to address this prob-
lem. These platforms allow students to engage with reading
materials while teachers monitor their activities and provide
adaptive support. Our research was conducted in the context
of one such platform, AL. This paper makes the following
contributions:
• Contrary to previous approaches that rely only on

question-solving actions, we consider temporal ordering
of question-solving behavior along with other student
interaction behaviors.

• Our features are theoretically grounded in the learning
1https://nces.ed.gov/nationsreportcard/reading/

sciences literature. Our findings may be helpful for the
creation of reading interventions.

• Our transformer-based model provides explanatory abil-
ity by attention–thus it can be helpful to teachers and stu-
dents to understand model’s prediction.

Related Work
Knowledge Tracing. (KT) In order to model students’ un-
derstanding of a domain we must track or trace their knowl-
edge. Existing KT models fall into two broad categories:
cognitive diagnostic and deep learning-based models. The
first category centers around the Bayesian knowledge trac-
ing (BKT) (Corbett and Anderson 1994). It uses students’
historical exercise records to estimate the probability that a
student has mastered a specific skill. The Rasch model eval-
uates students’ latent ability level needed to obtain a 50%
chance of accurately answering a question. The descendent
of Rasch models are learning factor analysis (LFA) (Cen,
Koedinger, and Junker 2006) and performance factor anal-
ysis (PFA) (Pavlik, Cen, and Koedinger 2009). All these
methods use student mastery or proficiency metrics to pre-
dict students’ performance.

Piech et al. proposed deep knowledge tracing (DKT) us-
ing a recurrent neural network (Piech et al. 2015). The DKT
model achieved 25% gain in area under curve (AUC) on
two real world datasets compared to statistical prediction
models. Since then, researchers proposed variations of DKT
methods. One limitation to the original DKT was it did not
consider skills associated with each question. Zhang and col-
leagues (Zhang et al. 2017a) proposed a model utilizing Dy-
namic Key-Value Memory Networks (DKVMN) to capture
skill-set associated with questions. The original BKT and
DKT does not capture students’ forgetting behavior. Forget-
ting curve theory states that the students’ memory decay ex-
ponentially with time (Ebbinghaus 2013). Recent models,
such as DKT-Forget, integrates forgetting behavior consid-
ering elapsed time between current event and previous event,
and elapsed time between events with similar skill tagging
(Nagatani et al. 2019). Shin et al. (Shin et al. 2021), incor-
porated two types of temporal features: total amount of time
spent on a question and the time gap between consecutive
question attempts. Wang et al. (Wang et al. 2021) studied
temporal cross-skill effect in KT methods. They argued that
the mastery of a skill is not only dependent on similar types
of skills but also is influenced by other skills.

Pandey et al. proposed an attention-based knowledge
tracing model, SAKT (Pandey and Karypis 2019). In
attention-based models, a positional embedding is used to
track sequential behavior instead of a recurrent neural net-
work. An enhancement of the SAKT model is RKT (Pandey
and Srivastava 2020)–which takes into account time decay-
ing forgetting behavior and question relationships in predic-
tion. Ghosh et al. (Ghosh, Heffernan, and Lan 2020) pro-
posed a time-decaying monotonic attention, AKT, to cap-
ture the importance of previous question-solving behavior.
Ghosh et al. argued that when students face a question, past
question-solving behavior from unrelated concepts or those
are not recent temporally may not be relevant.
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The AL system does not incorporate skill-tagging or a
student’s total time spent on a question-solving. Thus, we
integrate the time-decaying feature in our attention-based
model, similar to the AKT and RKT.

Reading Behaviors. Reading-to-learn is a self-regulated
learning (SRL) activity (Michalsky 2013). SRL refers
to planning, monitoring, and controlling activities during
learning (Zimmerman 1989, 2000). We identified three
reading-related SRL activities within the AL platform con-
sidering previous literature: annotating (Makany, Kemp, and
Dror 2009), highlighting(Winne et al. 2017), and vocabulary
lookups (Biemiller and Slonim 2001).

Contextual Embeddings. Representing text is a funda-
mental research problem in natural language processing.
These methods include unsupervised approaches, such as
Word2Vec (Mikolov et al. 2013) and Glove (Pennington,
Socher, and Manning 2014). Supervised methods, such as
Elmo (Peters et al. 2018), generate word embedding taking
the sentence context. Recently, transformer-based methods,
such as bidirectional encoder representations from trans-
formers (BERT) (Devlin et al. 2019) and its variants, such as
SentenceBERT (Reimers et al. 2019) have shown promising
results in contextual word embedding to represent sentences.
In our preliminary analysis, we found Universal Sentence
Encoder (USE) (Cer et al. 2018) was better performing than
SentenceBERT. Thus, we applied USE (Cer et al. 2018) to
encode textual representations in our study.

Question Relationship Modelling. Su et al. (Su et al.
2018) proposed an exercise-enhanced deep knowledge trac-
ing, EERNN. According to the authors, exercise texts may
semantically represent underlying knowledge concepts. An
extended version of the study was done by the same au-
thors proposing EKT (Liu et al. 2019). As we do not have
questions-to-skillset mapping, our approach is similar to the
RKT and EERNN methods–which utilize cosine similari-
ties between current and previous exercises to discover ex-
ercise relationships. In addition, we also incorporate two
other types of relationships: (i) cosine similarities between
the current exercise and previous SRL action texts and (ii)
cosine relationship between the current question’s response
text and previous SRL action texts.

Problem Formulation
The AL system catalogs K-12 curriculum-integrated read-
ing articles. Teachers can create assignments using provided
articles or by using their own reading materials. AL assign-
ments contain text-embedded questions that can be multiple
choice and short answer questions. Questions are graded on
a scale of zero to four. The system provides reading support
for students, allowing actions such as highlighting, annotat-
ing, and vocabulary lookup.

We aggregated students’ actions into a unified transaction
log. Table 1 shows a hypothetical example of our log.
Columns ‘AID’ and ‘Time’ refer to unique assignment ID
and sorted timestamps of students’ activities within the
system, respectively. In the above example, S1 highlighted
once (at T1), took a note (at T2), looked up vocabulary
once (at T4), and attempted three questions (at T3, T5, and
T6, respectively). The ‘Action Text’ column contains the

AID Time Action Action ID Action Text
A1 T1 Highlight h1 Highlighted Text
A1 T2 Annotation a1 Note Text
A1 T3 Question q1 Ques.Text
A1 T4 Vocab. Lookup v1 Vocab text
A1 T5 Question q2 Ques. Text
A1 T6 Question q3 Ques. Text

Table 1: A Hypothetical Student, S1’s, Action Log in the AL

textual description of corresponding actions. For example,
the action text at timestamp T1 and T5 contain textual de-
scriptions of S1’s highlighted text and attempted question,
respectively. We formulate our task as follows:

Definition 1 (PROBLEM DEFINITION). Given the log
of students’ actions and textual contents of each action, our
goal is to predict students’ question performance at time tT
considering students’ previous actions within an assignment
with timestamps t1, t2, t3, ..., tT−1 .

Scope. In past studies with DKT and its variations,
question-answering sequences were longer than ours (e.g.,
65.9 questions per student (Su et al. 2018)). In contrast,
the scope of our study is within a reading-comprehension
assignment–which has shorter sequence lengths. Detailed
statistics of our dataset are in Table 2.

Modelling
Figure 2 presents a high-level overview of our model.

Input Embedding
We encode actions to a fixed dimensional input interaction
vector, x. The vector x comprises the following parts:
• Text Embedding. We use the USE to represent each action

text into a d = 512 dimensional vector, E .

E = USE(ActionText) ∈ Rd (1)

• Action Type Embedding. We use an embedding size d =
512 to encode four different action types including ques-
tion attempts and three types of SRL behaviors.

• Score Encoding. We extend score of each question to a
vector size d. Otherwise, if the action is an SRL, we cre-
ate a vector d with dummy input -1 as score.

• Response Encoding. If the action is a question attempt,
we compute cosine similarity value between each ques-
tion and corresponding student’s response text. We ex-
tend the value to a vector size d. Otherwise, if the action
is an SRL, we create a vector d with input 0.

We concatenate these four feature vectors to form an input
interaction vector for each timestamp i, xi ∈ R4d.

In our model, we use the interaction vector as key and val-
ues when computing attention. Our query vector is the text
embedding of actions, E ∈ Rd. To match the interaction
vector’s dimension to the query vector, we apply a feed for-
ward network (FFN) with a ReLU activation to convert the
R4d dimensional vector into a Rd dimensional one.

x̂i = FFN(xi) ∈ Rd (2)
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Figure 2: Proposed Model: High-level Overview of Methodology

A student’s interaction sequence is represented as X =
[x̂1, x̂2, x̂3, ..., x̂T−1].

Note that we do not use any positional embedding
(Vaswani et al. 2017) as our time-decaying relation (next
section) incorporates inter-event information. Our approach
is similar to (Ghosh, Heffernan, and Lan 2020; Gu 2021).

Forgetting, Question and Response Relation
We integrate the elapsed time, question relation, and re-
sponse relation with the model’s attention (next subsection).
• Time Relation. This component takes into account stu-

dents’ forgetting behavior. We took the negative expo-
nential of the elapsed time ∆i between the Tth action
timestamp, tT and ith previous action’s timestamp, ti.
The elapsed time sequence of a student is
RTime = [exp(−∆1), exp(−∆2), ..., exp(−∆T−1)]

(3)
• Question Relation. This component computes the cosine

similarities between the Tth question embedding, ET

and a previous action (question attempt or an SRL) text
embedding at ti, Ei. If the Tth action is an SRL, the value
is 0. The question relation sequence of a student is

RQues = [g(ET , E1), g(ET , E2), ..., g(ET , ET−1)]
(4)

where g(ET,Ei) = cos(ET,Ei), if the Tth action is a
question attempt or otherwise 0.

• Question Response Relation. This component is only ap-
plicable for the SRL dataset (Table 2). It computes cosine
similarities between question response text embedding at
time T , RespET and a previous SRL action embedding
at ti, Ei. The question response relation sequence of a
student is

RResp = [f1, f2, f3, ..., fT−1] (5)
where

fi =


cos(RespET,Ei) action ti is an SRL &

tT action is a ques. attempt
0 otherwise

We combine equations 3, 4, and 5 and take the softmax.

R = Softmax(RTime +RQues +RResp) (6)

Attention
First, we describe the basic scaled-dot product attention
(Vaswani et al. 2017) and then our integration of relation
to the attention. Let, WQ,WK, and WV denote projection
matrices for query, key, and value space, respectively with
dimension Rd∗d. Let, qi be the query vector of a student’s
question attempted at time i. The attention, Atti, is

αi,j = Softmax(
qiW

Q.(kjW
K)T

d
), allj < i

Atti =
∑
j<i

αi,j .vjW
V

(7)

where kj and vj denote respectively key and value vec-
tors for previous actions, j < i. In transformer-based KT
models, keys and values are past events, so j < i (Pandey
and Karypis 2019). The Atti value denotes the relevance of
each past interaction with the question attempted at time i.

In our model, we combine αi,j with the relation coeffi-
cient, R, from Equation 6 as follows:

βi,j = λαi,j + (1− λ)Rj (8)

where Rj is the jth coefficient of R and λ is a trainable
parameter in our model.

And finally, we compute the attention Atti by multiply-
ing βi,j with our value (interaction) vectors

Atti =
∑
j<i

βi,j .x̂jW
V (9)

Multihead Attention. We compute multihead attention
from different semantic subspaces (Vaswani et al. 2017).
The process computes attention value on each head as de-
scribed above. The final output is a linear transformation of
concatenated attention values on each head.

Prediction
The predication layer concatenates the attention output,
AttT and Tth question embedding, ET. Then we pass this
concatenated input through a fully connected layer to gen-
erate prediction. In this study, we formulated the prediction
task as both a binary classification and a regression problem,
similar to the work of Su et al. (Su et al. 2018). For the clas-
sification task, the output passes through a Sigmoid function
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to generate the probability that a student answered a ques-
tion correctly. If a student’s actual score at time t is rt and
predicted score is r̂t, then the loss for a specific student is
L = −

∑T
t=1 (rtlog r̂t ) + (1-rt)log(1-r̂t). For the regres-

sion task, we minimize the mean squared error (MSE) loss
between r̂t and rt.

Experiments
Dataset Preparation
We conducted our study with anonymized middle school
physical science data collected from AL in 2018. We pro-
duced three different AL datasets:

• D1: Students only performed question attempts in an as-
signment but no SRL behaviors were captured. All en-
tries in this dataset are Case 1 in Figure 1.

• D2: Students performed question attempts and one or
more SRL behaviors in an assignment. All entries in this
dataset are Case 2 in Figure 1.

• D2.1: This dataset is a subset of D2. We only consider
question attempts from a student’s action sequence ignor-
ing SRL actions. For example, if we remove SRL actions
from Case 2 in Figure 1, the resulting action sequence
will be only question-solving attempts.

Table 2 shows our dataset statistics. Number of interac-
tions includes question attempts and SRL. We evaluate all
models on D1 and D2.1 and only our proposed model on
D2 dataset. We discard student sequences with less than two
entries. Observing dataset statistics in Table 2, we selected
previous action sequence lengths 8, 10, and 15 for D1, D2.1,
and D2 datasets to predict a question’s score at time T.

Baselines and Metrics
As our dataset does not contain questions to skill mapping,
we selected DKT models which do not require skill informa-
tion. We compared our model with two LSTM-based mod-
els, the DKT (Piech et al. 2015), EERNN (Su et al. 2018),
and one attention-based model, RKT (Pandey and Srivastava
2020). For classification formulation, given the skewed na-
ture of our dataset in Figure 3, we formulated it as a binary
classification problem. We considered score = 4 as one and

Datasets
No SRL SRL Removed

(D1) (D2) SRL (D2.1)
No. assign. 754 425 378
No. ques. 1,934 1,292 1,260

No. students 8,060 1,796 1,680
No. interactions 55,185 20,831 14,043
Seq. Mean (SD) 5.05 (3.18) 9 (4.9) 6.4 (3.6)

Seq. Median 5 9 6

Table 2: Dataset Statistics

any other score as zeros. We use AUC and accuracy as eval-
uation metrics. For the regression task, we report MSE and
mean average error (MAE) as evaluation metrics.

Implementation
We applied the standard 5-fold cross-validation (CV) at the
student level to evaluate all models. We used 20% of the
training data as validation. For fair comparison among mod-
els, the dataset split remained the same across all models.

We used the USE (Cer et al. 2018) for textual encoding.
USE can take phrases, sentences, and short paragraphs as
inputs and encodes inputs into a fixed-length vector of 512.
For all models, we used a batch size of 200, embedding size
of 512, and 300 epochs. We applied early stopping if the val-
idation AUC did not increase (or MAE did not decrease for
regression) over five epochs. We also reimplemented DKT
and EERNN and used the author’s provided source code
for RKT (Pandey and Srivastava 2020). For our proposed
model and RKT, we used learning rate = 1e−3 and number
of attention heads = 4. For DKT and EERNN, we tuned hy-
perparameters on the validation set for each fold: dropout =
{0.20, 0.33, 0.66} and learning rate = {1e−4, 5e−4, 5e−3}.

For our regression task, we adapted all baseline models,
as authors used those with datasets with binary values. In the
EERNN and RKT, authors first extended the binary score to
the equal length of the question embedding before append-
ing it to question embedding. Similarly, we extended a ques-
tion’s score [0− 4] to a vector of length 512 and appended it
with the embedding. DKT has an input vector length of 5Q,
where Q is the number of questions in the dataset and five
possible scores per question.

Results
Question Score Prediction. Table 3 and 4 present classifi-
cation and regression results, respectively. Our model has
the highest classification accuracy and AUC value on D1
and D2.1 datasets. For the regression task, our model has
the lowest MSE for D1 and D2.1 datasets. Considering the
MAE value, the RKT has the lowest value on the D1 dataset.
The vanilla DKT model performed poorly for both tasks, ex-
cept for D2.1 dataset classification. As we do not have skill
labeling, we used question identifiers to model DKT. DKT
models with a large number of questions and a few obser-
vations per question decrease the model’s performance, as
noted by Sonker et al. (Sonkar et al. 2020).
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Dataset Method Accuracy AUC
DKT 0.54 0.55
EERNN 0.73 0.78

D1 RKT 0.71 0.73
Proposed 0.77 0.84

D2 Proposed 0.78 0.85
DKT 0.62 0.65
EERNN 0.75 0.75

D2.1 RKT 0.65 0.64
Proposed 0.77 0.83

Table 3: Classification: Mean of 5-fold CV on test dataset.

Dataset Method MSE MAE
DKT 9.92 2.55
EERNN 2.13 1.16

D1 RKT 2.35 1.02
Proposed 2.11 1.04

D2 Proposed 1.75 0.98
DKT 9.92 2.78
EERNN 1.98 1.09

D2.1 RKT 2.22 1.03
Proposed 1.95 1.01

Table 4: Regression: Mean of 5-fold CV on test dataset.

Our model’s performance on D2 and D2.1 datasets show
that combining SRL features and question attempts result in
better predictive power in both predictive tasks compared to
only including question attempts.

Ablation Studies. We performed a series of ablation stud-
ies to understand the contribution of each component in pre-
diction. We present our classification and regression ablation
results in Tables 5 and 6, respectively.

Ques. Relation and Resp. SRL Relation cover cases where
we removed Equations 4 and 5 respectively from Equation
6. Similar to Ghosh et al. (Ghosh, Heffernan, and Lan 2020)
and Gu (Gu 2021), we also conducted an ablation study to
compare the sinusoidal positional encoding and proposed
time-decaying feature. Timesin refers to removing Equa-
tion 3 and integrating the fixed sinosoidal positional embed-
ding (Vaswani et al. 2017) to the interaction vector, x̂i .

Tables 5 and 6 show that removing question and re-
sponse SRL relation components decreased the model’s per-
formance. For both classification and regression tasks, re-
moving the response SRL relation leads to poorer perfor-
mance when compared to the question relation. However,
removing the time-decaying feature and incorporating the si-
nusoidal encoding improves the model’s performance. One
explanation could be that the attention model was developed
for natural language processing tasks incorporating the word
embedding and positional embedding in an additive man-
ner (Vaswani et al. 2017). Thus, adding positional encoding
to the USE embedding led to better performance. Secondly,
we used an additive term to combine the time-decaying fea-
ture in attention in Equation 8. Ghosh et al. stated that us-
ing a multiplicative time-decaying feature to their attention
model led to better performance compared to additive one

Dataset Method Accuracy AUC
Ques. Relation 0.73 0.78

D1 Timesin 0.78 0.86
Full Model (Table 3) 0.77 0.84
Ques. Relation 0.75 0.74

D2.1 Timesin 0.78 0.83
Full Model (Table 3) 0.77 0.83
Ques. Relation 0.78 0.79
Resp. SRL Relation 0.74 0.77

D2 Timesin 0.78 0.86
Full Model (Table 3) 0.78 0.85

Table 5: Classification Ablation.

Dataset Method MSE MAE
Ques. Relation 2.42 1.31

D1 Timesin 1.79 0.92
Full Model (Table 4) 2.11 1.04
Ques. Relation 2.24 1.08

D2.1 Timesin 1.80 0.94
Full Model (Table 4) 1.95 1.01
Ques. Relation 1.97 1.06
Resp. SRL Relation 2.19 1.16

D2 Timesin 1.94 1.06
Full Model (Table 4) 1.75 0.98

Table 6: Regression Ablation.

(see Section 3.2 (Ghosh, Heffernan, and Lan 2020)). We
opted for the additive operation to avoid any additional com-
putational cost and integrate students’ forgetting behavior.
Although the sinusoidal encoding results in better perfor-
mance, it captures sequential event positions and does not
capture the inter-event duration.

Attention Visualization. For the visualization purpose,
we present an example of attention weight averaged on four
heads in Figure 4. The student covered eight actions. Table
7 presents the timestamp, action type, action text, and score
received on the question. We exclude T3-T5 entries for bet-
ter illustration. We describe the model’s classification score
prediction on the question attempted at T8.

First, Figure 4 shows the model puts more weight on re-
cent actions T5- T7 compared to distant ones T1-T4. This
results from the model’s time-decaying feature. Second, we
observe from Table 7 the student scored zeroes on questions
attempted at T6 and T7. The question submitted at T8 is
a resubmission of T6. Thus, the model captured previous
scores on questions to predict the question score at T8 = 0.
Third, we observe that the student has used the term “at-
toms” in response to T8–which they looked up as a vocabu-
lary word (“atoms”) at T1. Equation 5 captures the relation-
ship between a question’s response text and any previous
SRL. Although the student used the vocabulary lookup in
their response, Figure 4 shows that our model has put less
weight on T1 action compared to T5-T7. We conclude this
is a result of the time-decaying feature.

Overall, our model can provide information about (i) how
past question attempts impact the current question’s score
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Figure 4: Attention Weight Visualization on Test Fold (Clas-
sification). Weight is Averaged on Four Heads.

Time
(Type)

Action Text (Score)

T1 (V) atoms (N/A)
T2 (V) cesium (N/A)
T3-T5 ...
T6 (Q) Why is a telephone considered an example of

matter? (0)
T7 (Q) What is the difference between mass and vol-

ume? (0)
T8 (Q) Why is a telephone considered an example of

matter? (True Score = 0, Predicted Score= 0)
Resp.: “because it has weight ,it takes up space
and is made of attoms and molecules”

Table 7: Student Action Sequence of Figure 4. V = Vocabu-
lary Lookup, Q = Question Attempt.

and (ii) how a student’s SRL behaviors before attempting a
question are related to the (a) question text and (b) submitted
answer text.

Discussion and Implications
We outline possible implications below.

For Researchers. Although researchers have proposed
dozens of variations on the basic DKT model (see Sec-
tion Related Work), these enhancements only consider the
students’ past problem-solving behavior to predict future
question performance. We address this gap by utilizing past
question-answering and reading-related SRL features in our
predictive model. Our experiments on D2 and D2.1 datasets
show that combining temporal ordering of SRL features
along with question attempts leads to better predictive per-
formance than considering only question attempts.

Teaching and Learning. In a teaching context, a model’s
interpretation is important for intervention. By providing an
estimate of student performance that is tied to specific study
habits and SRL features we can: (i) better identify what
contributed to students’ performance and (ii) what study
habits students can engage in to support better results. As
our model captures temporal data, a next step can be design-
ing a recommendation system for students’ personalized ed-

ucation.
Reading Intervention. Effective reading interventions

are a central goal for science education in the United States,
as seen by the emphasis within the new science educa-
tion framework proposed by National Research Council
“...Reading, interpreting, and producing text are fundamen-
tal practices of science in particular, and they constitute at
least half of engineers’ and scientists’ total working time.”
(NRC 2012). Prior researchers have identified that reading
in science is different from reading in other domains, be-
cause (i) science reading involves diagrams, charts, and mul-
timodal sources (Yore 2012) and (ii) academic science text
is difficult to comprehend (Buehl 2017) due to high lexical
density (i.e., the ratio of content words to overall words).
Our study explores how science-related reading behaviors
and question-answering can be modeled–an important step
toward analyzing this area of education research.

Conclusions
In this study, we investigated middle school students’ perfor-
mance on question attempts and reading-related interactions
within an online reading platform, Actively Learn. We com-
bine theory from learning science to identify reading-related
student interaction—SRL behaviors (Zimmerman 1989),
such as annotating, highlighting, and vocabulary lookup.
Our transformer-based predictive model integrates the tem-
poral ordering of question-solving and students’ interactions
—an area that is underexplored. Our findings show that
by combining temporal ordering of question attempts with
other interaction behaviors we can yield better predictive
power when compared to only taking question-attempt ac-
tions. The attention visualization provides explanations by
displaying weights of different actions during prediction. We
believe findings of our study will be helpful for students,
teachers, and researchers in AI and education.
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