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Abstract

Automated Scoring (AS), the natural language processing
task of scoring essays and speeches in an educational testing
setting, is growing in popularity and being deployed across
contexts from government examinations to companies pro-
viding language proficiency services. However, existing sys-
tems either forgo human raters entirely, thus harming the re-
liability of the test, or score every response by both human
and machine thereby increasing costs. We target the spec-
trum of possible solutions in between, making use of both
humans and machines to provide a higher quality test while
keeping costs reasonable to democratize access to AS. In this
work, we propose a combination of the existing paradigms,
sampling responses to be scored by humans intelligently. We
propose reward sampling and observe significant gains in ac-
curacy (19.80% increase on average) and quadratic weighted
kappa (QWK) (25.60% on average) with a relatively small
human budget (30% samples) using our proposed sampling.
The accuracy increase observed using standard random and
importance sampling baselines are 8.6% and 12.2% respec-
tively. Furthermore, we demonstrate the system’s model ag-
nostic nature by measuring its performance on a variety of
models currently deployed in an AS setting as well as pseudo
models. Finally, we propose an algorithm to estimate the ac-
curacy/QWK with statistical guarantees. Our code is avail-
able at https://git.io/J110y.

1 Introduction

Automated Scoring (AS), the task of assigning scores to un-
structured responses to open-ended questions, is an NLP ap-
plication typically deployed in an educational setting. His-
torically, its origins have been traced to the work of Ellis
Page (Page 1967), who first argued for the possibility of
scoring essays by computer. The factors behind the rise of
Automated Scoring systems and its subtasks, Automated Es-
say Scoring (AES) and Automated Speech Scoring (ASS)
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Figure 1: Existing Automated Scoring systems' either do
not involve humans at all in their scoring (Duolingo, Second
Language Testing Inc (SLTI)), or utilize human raters for
every single response (Educational Testing Services (ETS)).
Crucially, there are no solutions that target the gulf in be-
tween, where humans are involved in scoring only some per-
centage of the responses.

are numerous, including but not limited to, the costs in-
volved in providing and scoring a test, and ensuring that
all test takers are scored on a uniform set of rubrics applied
across all students, standardizing the scoring for these un-
structured responses. The promise of lower costs and uni-
form scoring rubrics among other factors, has fueled the
popularity of Automated Scoring systems, and various ML
and DL systems are being increasingly deployed in AS con-
texts (Kumar et al. 2019; Liu, Xu, and Zhu 2019; Singla
et al. 2021a). AS systems are behind some of the world’s
most popular language tests, such as ETS’ Test of English
as a Foreign Language (TOEFL) (Zechner et al. 2009),
Duolingo’s English Test (DET) (LaFlair and Settles 2019),
among others. Various governmental institutions and busi-
nesses have also instituted automated systems to augment
the scoring process, such as the state schools of Utah (Incor-
porated 2017) and Ohio (O’Donnell 2018), and a majority
of BPOs. It is estimated that automatic scoring has a large
market size of more than USD 110 billion, with a US mar-
ket size alone of USD 17.1 billion (TechNavio 2020; Service
2020; Strauss 2020; Le 2020).

However, this popularity has not been without backlash,
with criticism focusing on different aspects, such as “the
overreliance on surface features of responses, the insensi-
tivity to the content of responses and to creativity, and the
vulnerability to new types of cheating and test-taking strate-
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Figure 2: From a dataset, records are sampled and assigned to expert human raters for double scoring based on a human-machine
agreement matrix. A second sample is then drawn to check predictions and metrics are estimated with statistical guarantees.

gies.” (Yang et al. 2002). Others have given harsher criti-
cisms, such as (Perelman et al. 2014), who shows that it is
possible to game the system and achieve near perfect scores
on ETS and Vantage Technologies’ AES systems with gib-
berish prose. This has led to the revoking of NAPLAN AES
in Australia (ACARA 2018).

Nonetheless, the ability of AS systems to instantly pro-
vide scores, reduce costs, and make language proficiency
tests more widely available to all, makes them an impor-
tant research area and subsequently there is considerable in-
terest in improving them across multiple dimensions, from
leveraging advancements in NLP to achieve state-of-the-art
performance (Liu, Xu, and Zhu 2019) to improving their ro-
bustness (Kumar et al. 2020; Parekh et al. 2020; Singla et al.
2021b). In this work, we tackle another facet of Automatic
Scoring systems, that of improving performance by bringing
humans into the loop.

Typically in an AS task, a test taker’s responses are scored
on prompts of varying difficulty levels. Each prompt has its
own difficulty level, and based on the prompts’ difficulty
and the quality of the candidate’s answers to these prompts,
a score is assigned to the candidate. The Central European
Framework of Reference for Languages (CEFR) is an in-
ternational standard for measuring language proficiency and
assigns scores on a six-point scale from A1 (beginner) to C2
(proficient), each score with their own rubrics for evaluation
(Broeder and Martyniuk 2008). Each prompt and response is
assigned a score on this scale and a global score is computed
aggregating these individual scores.

Existing AS systems are typically of two varieties (Fig 1):

Double Scoring: Examinations such as ETS’ TOEFL
score every response by one human and an AES system as
the second rater. A second human rater resolves any dis-
agreements between the two (Yang et al. 2002). This effec-
tively means that atleast one human rater is required for ev-
ery test, driving up costs, as evidenced by the TOEFL’s high
price of ~230 USD (ETS 2021).

Machine-only Scoring: On the other end of the scale are
tests like the Duolingo English Test (DET) which are scored
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by machines alone, without any human intervention, keep-
ing costs low but decreasing the reliability of the test. This
is one of the main reasons, the DET costs USD 49, less than
one-fourth of what TOEFL costs. All tests surveyed in Fig 1
except Pearson PTE are priced around the same price point.

Our solution (Fig 2) proposes to unify these varieties, al-
locating the available human budget intelligently to balance
the reliability of the test with the cost to the test-taker. To
the best of our knowledge, no existing systems target this
continuum of utilizing both humans and AS raters. Provid-
ing this option would allow AS models to be deployed in
more versatile scenarios, working in tandem with expert hu-
man raters to provide both reliability and lower-cost solu-
tions. Increasing reliability helps to build trust in automati-
cally scored exams, thus leading to broader adoption. Cost is
a critical consideration to lower-income test-takers and those
who need to take the test multiple times.

We define the problem and solution more formally as fol-
lows: given a set of responses to be scored, a target AS
model, and an expert human budget (that is, the number
of responses we can have scored by expert human raters),
our goal is to efficiently sample responses to be scored by the
expert. These expert-scored samples are then combined with
automatically scored samples to maximize the overall system
performance metric. We propose a novel Monte-Carlo sam-
pling based reward sampling algorithm to efficiently sample
responses to maximize the system performance.

Usually one or multiple amongst accuracy, Quadratic
Weighted Kappa (QWK), or Cohen’s kappa (Taghipour and
Ng 2016; Zhao et al. 2017; Kumar et al. 2019; Grover et al.
2020; Singla et al. 2021a) are used in automatic scoring lit-
erature as they are robust measures of inter-rater reliabil-
ity, a primary goal in Automated Scoring. A key point to
be noted is that the reliability of the test (i.e. how consis-
tently a test measures a characteristic) is measured on the
global score (the aggregate of the responses) and lesser on
the score on the individual responses. The global score de-
termines admissions, interviews, and career growth, while
per-item scores are used as indicators of particular skills.



While intuitively, we can say that there exists a monoton-
ically increasing relationship between the reliability of the
test on individual questions and the overall score, we show
that it is more efficient to consider the global context instead
of item-level context, while sampling responses for getting
them double-scored by humans.

We establish strong baselines using Uncertainty Sam-
pling (§3.2), an importance sampling formulation that sam-
ples using probability of being wrong output by the AS
model. We propose Reward Sampling (§3.3), that samples
based on the estimated reward of correcting a mistake.

We summarize our main contributions as follows:

- We propose to combine existing paradigms to integrate
humans with Automated Scoring systems. Provided a bud-
get indicating the number of responses that can be scored by
human raters, we observe significant gains in accuracy and
QWK using our proposed sampling model, Reward Sam-
pling (§3.3). For instance, by using 40% human budget with
an AS model with 64% accuracy, our sampling methodology
can achieve an accuracy gain of 23% while random sampling
leads to 14% and uncertainty sampling leads to 15%. To the
best of our knowledge, this is the first time such a formula-
tion has been considered in Automatic Scoring systems.

- We conduct experiments on various models differing
in accuracy to show our algorithm’s model agnostic nature
(§3). We include results from models deployed in AS set-
tings in the real world to crafted pseudo models. Averaging
over these models, we observe 19.80% increase in accuracy
and 25.60% increase in QWK when using reward sampling
with 30% of the dataset as a human budget. The random
sampling and uncertainty sampling baselines achieve 8.6%
and 12.2% gains in accuracy, respectively.

- While augmenting the system’s performance is an im-
portant goal, it is equally important to quantify this improve-
ment, especially when deployed in the real world, where
there are no labeled datasets to compare against and the con-
sequences of misgrading, for both business and test takers,
could be catastrophic. Thus, we also propose an algorithm
to estimate the accuracy and QWK achieved, with statistical
guarantees. (§3.4).

2 Related Work

Broadly, our paper covers two areas of research: Automatic
Scoring and Sampling methods. Here we cover them briefly.

Automatic Scoring: The goal of an automatic scorer is
to assess language competence of a candidate with an accu-
racy matching that of a human grader, but faster, with greater
consistency and at a fraction of the cost (Malinin 2019; Yan,
Rupp, and Foltz 2020). Almost all work in the automatic
scoring domain has been to better model the scoring of es-
says and speech traits as a natural language processing task.
The techniques have ranged from manually-engineered nat-
ural language features (Kumar et al. 2019; Dong and Zhang
2016) to LSTMs, memory networks (Zhao et al. 2017) and
transformers (Singla et al. 2021a; Shah et al. 2021). There
has also been some recent work in other facets of AS includ-
ing adversarial testing (Ding et al. 2020; Kumar et al. 2020;
Parekh et al. 2020), explainability (Kumar and Boulanger

12837

2020), uncertainty estimation (Malinin 2019), off-topic de-
tection (Malinin et al. 2016), evaluation metrics (Loukina
et al. 2020), etc. The Linguaskill test escalates responses to
be graded by humans when scores/confidence are outside
manually set thresholds (Xu et al. 2020). To the best of our
knowledge, there is no work on increasing the reliability of
automatic scoring systems using sampling to bring humans
into the loop. Most white papers from second language test-
ing firms mention results on historical data as a measure of
their reliability (Brenzel and Settles 2017; Pearson 2019).
Due to continuous domain shift, historical results cannot be
trusted for a model’s future performance gains. Therefore,
performance guarantees of AS models are essential to estab-
lish institutional trust in them. To fill this research gap, we
propose reward sampling based on Monte Carlo sampling
methods for measuring and increasing AS systems’ reliabil-

1ty.

Monte-Carlo Sampling For Evaluation: There has been
much work in improving automatic metrics using Monte-
Carlo sampling methods in machine translation and nat-
ural language (NL) evaluation (Chaganty, Mussman, and
Liang 2018; Hashimoto, Zhang, and Liang 2019; Wei and
Jia 2021). They use statistical sampling methods like impor-
tance sampling and control variates to combine automatic
NL evaluation with expensive human queries. To the best
of our knowledge, we are the first to extend sampling tech-
niques in the context of automatic scoring. We use them to
combine relatively cheaper automatic scoring model results
with expensive human expert scorers. Kang et al. (2020) use
sampling for approximate selection queries. They combine
cheap classifiers with expensive estimators to meet mini-
mum precision or recall targets with guarantees. We extend
their work to take the global context into account while esti-
mating accuracy (§3.4).

3 System Overview

This section describes the components of the proposed solu-
tion, the intuition and reasoning behind the sampling mech-
anisms, and the algorithm for estimating the metrics with
statistical guarantees. Given an Automated Scoring model, a
dataset to be scored, and a human budget indicating the per-
centage of records we can provide to expert human raters for
scoring, records are sampled making use of a pre-computed
human-machine agreement matrix (to be described be-
low). For the samples selected, we replace the predictions
made by the AS model with the scores provided by the hu-
man raters and compute an estimate of the increase in accu-
racy and QWK with guarantees (Fig 2).

When considering sampling, the baseline approach is ran-
dom sampling i.e. sampling with uniform probability for
each record in the dataset. This is not a good allocation of
resources, as when considering models of high quality, most
samples will not provide any value. For example, with a
model of 75% accuracy, random sampling would only pro-
vide value for ~25% of samples, as the rest would have
been correctly scored anyway. This motivates our search for
a more efficient sampling mechanism, one that takes into ac-
count the probability of the model being wrong with respect
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Figure 3: A sample human-machine agreement matrix on a
CEFR aligned scoring scale. The rows indicate machine pre-
dictions, and each row is normalized to give the probability
of the machine class matching the human labeled class.

to a human expert, and crucially, the reward that would be
gained by correcting this mistake. We define the reward as
the magnitude of the change in the global score that would
occur when a local response is changed as a result of human
correction of machine score (§3.3).

3.1 Human-Machine Agreement Matrix

The human-machine agreement matrix is a normalized con-
fusion matrix of the model’s predictions and the ground
truth, precomputed on validation data or historical test data.
Each entry indicates the probability of the class predicted
by the machine aligning with the class labeled by the hu-
man. Fig 3 shows a sample human-machine agreement ma-
trix where m[Low B1] [High B1] 0.17 indicates
the probability of the ground truth being High B1 when
the machine has predicted Low B1.

3.2 Uncertainty Sampling

The key idea behind uncertainty sampling is that the ma-
chine is not equally likely to be wrong across all prediction
classes. Some scores may be assigned with much better ac-
curacy than others. This idea is borne out by the human-
machine agreement matrix as well, where the probabilities
of a correct prediction are along the principal diagonal. We
can see in Fig 3, High B1, Low B2 are accurately pre-
dicted whereas A2, High B2 predictions are likely to be
wrong. Since the machine is likely making a wrong judge-
ment when predicting these classes, it would be more effi-
cient to sample more from the records where these predic-
tions have been made and corrected using human labelers.
To quantify this, we formulate Uncertainty Sampling as
vanilla importance sampling, where the uncertainty of each
class is calculated using the cross-entropy function. Each
row in the human-machine agreement matrix represents the
probability distribution of the ground truth when that par-
ticular class has been predicted. The cross entropy of this
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distribution with the ideal distribution (one-hot encoding for
that class) is calculated.

For e.g., the distribution associated with Low B1 in the
matrix is [0.0078,0.73,0.17,0.086,0.0026,0]. The cross
entropy of this distribution with the ideal distribution (
[0,1,0,0,0,0]) for Low B1 is calculated. In this way, we
can quantify the “loss” associated with Low B1. Subse-
quently, every record is assigned a loss associated with the
prediction made for that record, and this is normalized over
the entire dataset to create a probability distribution. We
draw a sample s ~ U(D) without replacement from the un-
certainty distribution over the dataset U (D). The provided
human budget indicates the number of samples to be drawn
and the likelihood of a record being drawn corresponds to
the uncertainty associated with the prediction class.

3.3 Reward Sampling

For single skill testing exams (for e.g., one out of speak-
ing, writing, reading) like the one by SLTI (2021) and LTI
(2021), the test reliability and validity are measured over the
complete test as opposed to individual prompts. While in-
creasing accuracy on individual prompts (through sampling
and subsequent human intervention) is a sure way of increas-
ing the accuracy on the overall exam, it is more efficient
to directly sample records which are more likely to affect
the overall result, rather than simply sampling those which
the machine is uncertain about. In uncertainty sampling, we
sample records based on the likelihood of the prediction
being wrong, but we do not consider whether being right
would actually change the global score. This is the motiva-
tion behind reward sampling. Here we sample records which
are more likely to generate a larger reward, i.e., a change in
the score at the global level. To this end, the expected reward
E'r is calculated for each record in the dataset as:

Er(d) = Zp(c | m) x reward(d,c) ¥Yd € D
ceC

(D

where d represents one record in the dataset D, ¢ and m
represent classes in the set of all classes C, p(c|m) indi-
cates the probability of the ground truth being ¢ when ma-
chine has predicted m, and the reward function is denoted as
reward. The expected reward encodes the reward gained by
the ground truth being ¢ when the machine has predicted m
weighted by the probability of the same, summed over ev-
ery class c. p(c|m) is looked up from the human-machine
agreement matrix and the output of the reward function is
weighted by this probability.

The reward function calculates the reward gained by
swapping the predicted class with a different class. The ag-
gregate label for the candidate associated with d is calculated
before and after the swap with a new class, and the reward is
defined as the absolute difference between the two scores,
which encodes the magnitude of the score change that would
happen if the prediction class was changed from m to c. The
absolute difference is considered because it is equally im-
portant if the new score is greater or lesser than the predicted
score, thus incurring the same reward. If the prediction is an
outlier compared to predictions on other responses of the
same candidate, a large reward could be generated when
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Table 1: Accuracy (acc) and Quadratic Weighted Kappa (kappa) for various models across multiple sampling methods and
increasing percentages of the dataset as sample size. Bold indicates the best performing variant for each configuration.

changing predictions, making it a prime target for sampling.
On the other hand, if changing the class to ¢ does not change
the final score, then a reward of 0 would be generated. With
a zero reward, these records would not be sampled. Thus, to
ensure that every record has a nonzero reward i.e a nonzero
probability to be sampled, the reward is additively smoothed
Er(d) = Eg(d) + A where A = 0.001. In this manner, an
expected reward is calculated for each record in the dataset.

The sampling procedure proceeds similarly: the rewards
are normalized to create a probability distribution over
which a sample s ~ Eg(D) is drawn. In using this sampling
mechanism, we directly sample records that are most likely
to provide us an improvement at the aggregate level, com-
pared to indirectly improving the aggregate metrics when
using uncertainty sampling.

3.4 Estimation with Guarantees

In high stakes testing scenarios, it is critical to ensure that
the system does not fail catastrophically. For this reason, it
is important to provide estimations of system metrics with
guarantees. Kang et al. (2020) describes an algorithm that
provides statistical guarantees on precision/recall on a subset
of results returned from a dataset. More specifically, given
a dataset, a precision/recall target value, sample size and a
failure probability, the algorithm returns a result (a subset of
the dataset) which meet the required precision/recall target
with a probabilistic guarantee.

Our task is similar, but instead looks at providing guar-
antees on the accuracy/QWK of overall score on the entire
dataset rather than just a dataset subset and individual sam-
ples. To provide these guarantees, we form confidence inter-
vals over accuracy/QWK and take the lower bound.

The samples selected by reward and uncertainty sampling
procedures are not a good fit for estimation as they have been
taken with the purpose of correcting mistakes and improving
reliability. This means that highly underconfident samples
would be selected, thus leading to inaccurate performance
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estimates. Kang et al. (2020) show that importance sam-
pling based on a model’s confidence of prediction improve
over uniform random sampling by providing a lower vari-
ance estimate. More specifically, they show that the squared
confidence of the model minimizes the variance of the esti-
mate. As we have not considered model confidence in our
work, we take the following formulation as a proxy for con-
fidence, applied over every candidate who wrote the test (not
responses to individual questions):

() =@0=> i[u))*> vteT

ict

2

where ( represents the confidence associated with a test
taker ¢ in the set of all test-takers T, 7 represents individual
responses of ¢ and u represents the uncertainty. From uncer-
tainty sampling, we have a normalized uncertainty associ-
ated with each response, this is aggregated over all responses
of a candidate, subtracted from 1 and then squared to pro-
vide a confidence estimate. This confidence is normalized to
create a probability distribution. A secondary smaller sam-
ple is taken over this distribution of candidates, effectively
sampling all underlying responses of the candidate. Using
the aggregated labels and predictions, the lower bound esti-
mates of accuracy and kappa (McHugh 2012) are calculated.

4 Experiments
4.1 Dataset

To evaluate our method, we make use of data collected by
Second Language Testing Inc. (SLTT) while conducting the
Simulated Oral Proficiency (SOPI) Exam. The SOPI exam
has been used since 1992 and studied extensively (Stans-
field and Kenyon 1992, 1996). SOPI is used for interviews,
university admissions, skill development and as a test in sev-
eral online courses (SLTI 2021). SOPI offers psychomet-
ric advantages in terms of reliability and validity, partic-
ularly in standardized testing situations. The candidates in
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Figure 4: In each model, we show the change in accuracy (left) and quadratic weighted kappa (QWK) (right) after sampling
with the sample size (human budget) shown on the x-axis. As can be seen, reward sampling outperforms both uncertainty

sampling and random sampling baseline in each model.

the dataset are primarily Filipino high school graduates and
above. A test-taker is presented with six prompts on their
computer and their responses for each individual item are
recorded. The prompts and the rubrics for evaluation fol-
low the Central European Framework of Reference for Lan-
guages (CEFR) (Broeder and Martyniuk 2008) guidelines.
The prompts difficulty varies from B1 to C1. A candidate
receives both a prompt-level score and a global score cal-
culated from the individual prompt-level scores. The SOPI
dataset has eight question papers (forms) containing six
prompts each, and each form was attempted by 7200 speak-
ers on an average. Many other works have used the SLTI
dataset for tasks including automated scoring and coherence
modeling (Grover et al. 2020; Patil et al. 2020; Stansfield
and Winke 2008; Singla et al. 2021a).

4.2 Experimental Setup

To demonstrate that the sampling methods described are
model agnostic, we conduct experiments using multiple
models of varying accuracy. We leverage speech scoring
models from Singla et al. (2021a), making use of state-of-
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the-art models such as BERT and Bi-directional LSTMs,
both baseline versions and conditioned on speaker infor-
mation. In addition, we also run experiments on a pseudo
model, described as follows. For a given accuracy, a pseudo
model’s predictions are generated by randomly changing
100 — acc% of ground truth labels. For e. g., the prediction of
a pseudo model with 65% accuracy is the ground truth with
35% of labels randomly changed. Predictions, and hence ac-
curacy, are generated at the local level, for each response
whereas we are concerned about the metrics at the global
level, which is typically lesser. The dataset is split into train
and test sets, with the additional constraint that this split be
done such that all responses of one candidate are contained
in a set, and not split between the train and test sets. For our
experiments, since we do not have a precomputed human-
machine agreement matrix, we compute it using the train-
ing set and hold out the test set for verifying our proposed
system. In addition, the aggregate dataset must also be calcu-
lated from each candidate’s individual responses, calculating
the candidate’s global score from each of their responses.

The experiments were conducted with sample sizes upto
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Figure 5: The metrics of two models [0 - BERT-TwoStage,
1 - LSTM-Baseline] have been presented. Results for other
models are similar and are not shown for visual clarity.

80% of the dataset to observe the effect of sample size on
the improvement in accuracy with respect to each sampling
method. Records are sampled from the test set according to
Reward Sampling, along with Random (uniform) Sampling
and Uncertainty (importance) Sampling, our baselines. We
replace the predictions of records in the sample with those
of the ground truth, following which we recompute the ag-
gregate dataset. This dataset is used to calculate the system
level metrics, not just the model, but the combination of the
model and the human in the loop. In estimating metrics, a
secondary sample was taken. Empirically, we observed that
a sample size of 200 was sufficient for stable estimations
of a 95% confidence interval. We report our estimation on
Reward Sampling when considering 80% of the dataset as
human budget i.e. the most performant configuration.

5 Results
5.1 Improving Reliability

Table ?? presents the results of the experiments conducted
across configurations of models, sampling methods, and hu-
man budget. Entries in bold indicate the best performing
configuration, which is identical across nearly all models
(Reward Sampling with the maximum sample size, 80% of
the dataset). The models considered are BERT (baseline),
BERT (two stage speaker conditioning), BD-LSTM with
Attention (baseline), BD-LSTM with Attention (two stage
speaker conditioning) and a pseudo model with accuracy =
0.75 at the local level. For all models, the dataset is aggre-
gated, following which accuracy and QWK are calculated,
giving us the values in the Model metrics column.

Fig 4 shows the change in both accuracy and QWK at the
global level for various models. The changes are measured
for increasing human budget i.e. percent of responses avail-
able to be scored by humans upto 80% of the dataset. For
illustration, we consider the BERT-Baseline model. Firstly,
we observe that random sampling shows minimal improve-
ment (3%) over the actual accuracy when sampling 10% of
the dataset to be scored by human raters. This is due to the
model’s accuracy (66% of all samples would have been pre-
dicted correctly anyway) and the remaining gains are further
minimized by the aggregation process. Reward Sampling,
on the other hand, shows an 8% gain in accuracy, more than
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twice the gains achieved by random sampling. Interestingly,
Uncertainty Sampling shows similar gains to random sam-
pling in all models except the pseudo model, where its per-
formance is more in line with reward sampling. The predic-
tions of the pseudo model are randomly generated, hence
local gains translate well to global gains. This difference is
likely the reason for the large gap in performance when con-
sidering uncertainty sampling on pseudo and real models.

Reward Sampling, where the reward that is gained by hav-
ing a record rated by a human is also a sampling factor,
shows significant gains across models as shown in Fig 4. We
note that the gains provided by Reward Sampling decline
compared to the baseline sampling methods with increas-
ing sample sizes. Initially, Reward Sampling outperforms
the other sampling methods with large gains, upto a sam-
ple size of ~30%. Beyond this mark, the gains are no longer
as significant and the other methods slowly catch up. This
trend holds across all models, indicating that Reward Sam-
pling shows maximal gains over baselines when sampling
less than half of the dataset for human scoring.

5.2 Estimation with Guarantees

Fig 5 is a plot visualizing the metrics of the models when
utilizing reward sampling and an estimate of the same. The
sample size used for estimation remains constant and it is
only the sample used for reward sampling that changes. Af-
ter reward sampling, a sample based on the confidence distri-
bution (§3.4) is drawn, and the 95% confidence interval for
both accuracy and kappa is calculated. The lower bound is
taken to provide a statistical guarantee that accuracy/QWK
will only fall below the estimated values 5% of all runs.

6 Conclusion

Automatic Scoring (AS) helps assess the language compe-
tency of candidates with accuracy matching that of a human
grader, but faster, with greater consistency and at a fraction
of the cost. Existing systems either rely on double scoring,
effectively scoring each sample by both human and AS sys-
tem, or solely by an AS system. Although double scoring is
more reliable, it is considerably more expensive. We develop
novel, sample-efficient algorithms to target the spectrum of
possible solutions in the middle of both extremes. We show
that by using a relatively small human budget, we can im-
prove and estimate performance with guarantees, thus in-
creasing the reliability and trustworthiness of the system. We
implement and evaluate our algorithms on real exam data,
showing that they outperform naive baselines in all settings
evaluated. These results indicate the promise of probabilistic
algorithms to improve and estimate automatic scoring relia-
bility with statistical guarantees.

As part of future research, we plan to work on even more
sample efficient algorithms and incorporating trait scoring
while sampling. Another possible research avenue where we
can apply our algorithms is in test design. While right now
test design involves linguistic validity assessment studies,
it does not take into account the reliability of the final test
built. Reliability of a test could be incorporated as another
constraint easily through our modelling paradigm.
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