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Abstract 
Fun, as a game trait, is challenging to evaluate. Previous re-
search explores game arc and game refinement to improve 
the quality of games. Fun, for some players, is having an 
even chance to win while executing their strategy. To ex-
plore this, we build boards for the game Ticket to Ride 
while optimizing for a given win rate between four AI 
agents. These agents execute popular strategies human play-
ers use: one-step thinking, long route exploitation, route fo-
cus, and destination hungry strategies. We create the under-
lying graph of a map by connecting several planar bipartite 
graphs. To build the map, we use a multiple phase design, 
with each phase implementing several simplified Monte 
Carlo Tree Search components. Within a phase, the compo-
nents communicate with each other passively. The experi-
ments show that the proposed approach results in improve-
ments over randomly generated graphs and maps. 

Introduction 
Fun has no current evaluation, but ways of evaluating the 
quality of games have been developed and explored. Game 
refinement (Sutiono et al. 2014) and game arc (Silva et al. 
2018) have been used to measure the quality of games 
based on the number of available options. These measures 
do not consider the quality of available moves; they strictly 
count the number of moves. Both these measures fail to 
consider that players may prefer different kinds of moves. 
They also do not consider if none of the remaining moves 
correspond to a player's strategies. To overcome these 
limitations and avoid evaluating the quality of every move, 
we consider a simplified measure of quality. Our strategy 
is to start with the desired win rate among several player 
agents then build games that produce a win ratio close to 
the desired one when simulated. To make games evenly 
fun, we try to balance the win ratio between different 
strategies of Ticket to Ride players. By balancing win 
rates, we design games that give players an even 
opportunity to execute their strategy and win. We assume 
that each player agent executes only its chosen strategy. 
Our newly designed game allows each player to perform 
several moves they deem quality moves and still win an 
even number of games. This evaluation would mean 
human players have the chance to follow their selected 
strategies and produce an engaging game in the process. 

Ticket to Ride and Its Rules 

 
Figure 1. Original USA Ticket to Ride board. 

Ticket to Ride (TTR) is a board game for 2-5 players in 
which players build railway routes between cities and 
complete destinations for points. The game board 
comprises cities, the connections between them, a deck of 
colored train cards, and a destination card deck. Cities can 
be connected by either single or double routes. At the 
beginning of the game, players draw three destination 
cards and must keep at least two. Destinations depict two 
cities to connect and points gained from connecting those 
cities by building routes between them. If a player fails to 
connect the cities of a destination, that player loses these 
points. Players build routes between connected cities by 
spending train cards. The train cards are drawn from the 
top of the train deck or can be picked from five face-up 
cards. Players may pick two train cards or a locomotive 
that stands in for any color; however, they may only take 
that one card if they draw a face-up locomotive. Colored 
train cards are collected and spent along with a player's 
own trains to build routes of length one to six.  

Players get points for each route, according to their 
length. Longer routes earn more points than shorter ones. 
Routes with any color other than grey must be built using 
trains cards that match the route color while grey routes 
may be built using any same-color train cards. At any time, 
instead of picking train cards, a player may choose to draw 
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three new destination cards, of which it has to keep at least 
one. 

Players begin the game with 45 trains to use when 
building routes.  The game ends one round after any player 
has two or fewer trains remaining. At the end of the game, 
players claim points from the destinations they completed, 
the routes they built and can claim extra points from 
having the longest path of trains. If the routes' lengths and 
colours are removed, the game board becomes a multi-
graph with either single or double edges. If double edges 
are removed, the multi-graph becomes a simple graph 
which we will refer to as the underlying graph of a game 
board. The destinations, the double routes, the colours, and 
the lengths of the routes can thus be viewed as features 
added to the underlying graph. 

Previous Work 
Silva et al. explored a genetic algorithm to build maps for 
Ticket to Ride (Silva et al. 2018). They investigated 
underlying graphs which are valid under some restrictions 
for a TTR board. The fitness function evaluates the game 
arc, which quantifies the number of available moves 
throughout a game. The game arc they attempt to match 
implies a few decisions at the beginning. The number of 
decisions available into the mid-game gradually increases. 
Then it decreases to just a few decisions towards the end of 
the game.  
 Using the same engine and agents as Silva et al. Witter 
and Lyford (Witter and Lyford  2020) applied graph theory 
and probability tools to explore improvements to Ticket to 
Ride. They found that longer routes were 
disproportionately overvalued, which could be exploited 
by some players and proposed a new method for scoring to 
correct this issue. To improve the scoring mechanism, their 
method linearly searches modified route values to even the 
win rates between agents on the original USA map. 

Player Strategies 
Players may use any strategy they desire within the limits 
of Ticket to Ride's game rules. The information available 
to the players is limited because TTR is only partially 
observable: train cards and destination cards are hidden 
from other players. Without complete information, game 
agents that implement general multiplayer strategies like 
best-reply search, paranoid, and maxn (Schadd and 
Winands 2011) are at a disadvantage. For these reasons, 
we only use agents that implement the following popular 
strategies used by human players of TTR. 

One Step Thinker Agent (OSTA) 
The one step thinker agent simulates players that make 
decisions turn by turn. This agent selects new destinations 
only after completing all the current destinations it has. It 

executes a common strategy of some players by 
prioritizing expensive destinations and looking to complete 
the destinations as quickly as it can from its current 
position (Silva et al. 2017). 
 
Path Agent (PA) 
The path agent executes a similar strategy to the one step 
thinker agent but focuses on scoring on longer, more 
valuable routes. Often it works on routes that 
simultaneously complete multiple destinations. This agent 
never chooses to pick more destinations.  After completing 
its original destinations, it focuses exclusively on the 
highest value routes (Silva et al. 2017). 

Long Route Junkie Agent (LRJA) 
The long route junkie agent implements a strategy that 
never claims low value short routes. It attempts to 
complete all the destinations it selected by completing only 
routes of length greater than three. By doing so, it typically 
loses points from destinations but makes up for them 
through the high value of the long routes it built (Silva et 
al. 2017). 

Hungry Agent (HA) 
The hungry agent uses a strategy focused on claiming as 
many points as possible from destinations by taking 
destinations until it has enough to spend all its trains on 
them. Then it formulates a plan to complete all these 
destinations while claiming the most important routes first 
(Silva et al. 2017). 

Map Building Strategy 
The overall approach we use is described by: 

1) Start with the desired win distribution among 
players 

2) Select or generate an underlying graph  
3) Add double routes  
4) Add destinations cards  
5) Add lengths to routes  
6) Add colors to routes  

Steps 3, 4, 5, and 6 optimize the corresponding features 
towards the desired win distribution. The graph generating 
process in step 2 tries to optimize the graph selection with 
respect to the desired win distribution. Ideally, the 
optimization process will consider all extensions at once, 
but this would create a very large search space. By running 
the optimizations separately, we drastically reduce the 
search space. Steps 3 and 4; and 5 and 6, respectively, run 
separately but are synchronized by exchanging information 
after each choice. This further reduces the complexity of 
the optimization problem. We build maps using a multi-
phase design inspired by the work of Abukhait et al. on 
Nine Men's Morris (Abukhait et al. 2019). The primary 
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difference is that we apply this design to a game building 
agent rather than a game playing agent. 

The Distance Function 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
∑ |𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖|𝑛𝑛
𝑖𝑖=1

2 − 2𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖=1𝑛𝑛 (𝑑𝑑𝑖𝑖)
 

To measure the accuracy of the results, we introduce a 
distance between the desired win ratio and a win ratio 
calculated by simulating games on the tested board. The 
distance can be applied to any number of players (n). In 
our simulations, we fixed n to 4 as we experimented with 
four different strategies. The distance estimates the sum of 
the absolute error between the desired and the calculated 
win ratios. The sum is normalized by dividing it by the 
sum of the absolute error of the worst-case scenario, which 
happens when the agent with the smallest desired win ratio 
wins all the games. The value of the absolute error of the 
worst-case scenario is 2 − 2𝑚𝑚𝑑𝑑𝑑𝑑𝑖𝑖=1𝑛𝑛 (𝑑𝑑𝑖𝑖) , where di is the 
desired win rate for agent i, and ci is the calculated win rate 
for agent i. After normalization, the distance will have 
values between 0 and 1, where 0 means a perfect match 
between the desired and calculated win ratio. 
 Consider, for example, a desired win ratio d of 
(0.35,0.4,0.25). If the calculated win rate c is 
(0.34,0.38,0.28), then the distance formula's numerator will 
be 0.01+0.02+0.03=0.06. For this d, the worst-case 
scenario is when c is (0,0,1). In this case, the denominator 
of the distance formula becomes 0.35+0.4+0.75, which is 
the same as 2-2*0.25. Thus, the distance is 0.06/1.5=0.04. 
 All optimizations try to minimize this distance.  
 We use several phases to build an optimized game 
board. (see Figure 2) Within a phase, optimizers can 
communicate with each other by sharing a common partial 
assignment. The purpose is to reduce the possibility of 
making changes that cause sudden shifts in the distance 
due to a sharp increase in the win rate of one of the agents.  

We designed five optimizers; one used to generate an 
underlying graph – the graph optimizer (GO), and four 
that optimize the features of the board: color – the route 
color optimizer (CO), length-the route length optimizer 
(LO), double routes – the single-double route optimizer 
(SDO), and destination card value -the destination value 
optimizer (DO). Each optimizer implements a simplified 
Monte Carlo Tree Search (Coulom 2007).  The goal is to 
generate a full assignment of features that produces a game 
board on which players have a win ratio close to the 
desired one. We estimate the win ratio of a game board as 
the average of 20 simulated games between the player 
agents. 

Graph Optimizer  
The primary requirement of physical boards of TTR is that 
the underlying graph must be planar – it can be drawn 
without any intersections over edges. 

Our graph optimizer starts by creating components of 
the graph – which we refer to as subgraphs, using plantri 
(Brinkmann and McKay 2007), a C program designed to 
produce unique planar graphs. It takes as parameters the 
order of the graph and, optionally, a range for the number 
of edges of the graph. Using plantri GO produces graphs 
with 12 vertices, 25 to 30 edges, and a minimum degree of 
2. These numbers were chosen such that the final 
underlying graph has 36 cities, between 93 and 108 routes 
(some of which will become double routes in the next 
phases), and no end-of-the-line cities. 

It starts by sampling from the first 10,000 graphs 
generated by plantri. It filters out graphs having a vertex of 
degree larger than 6 (this ensures that no city will have 
more than 7 routes in the final map, which is a feature of 
the original USA board). Thus, it reduces the number of 
candidates to only 86. 

Using a procedure similar to the optimization presented 
in the next subsection, it finds three subgraphs that produce 
the closest win ratio to the desired one. It then connects 
them to create the final underlying graph. It adds 6 edges to 
each pair of subgraphs by repeating twice the following 
procedure: 

1) Select from each graph the pair of vertices with the 
lowest degree 

2) Add 4 edges by connecting each vertex from a pair to 
the vertices from the other pair 

3) Remove the edge which connects the highest degree 
vertices from each pair. 
 The main benefit of this procedure is that it creates 
planar graphs and balances the degree sequence of the 
resulting graph. 

Two-Phase Optimization Design 
The optimization proceeds in two phases: one in which the 
destination card values and double routes are added; and 
one in which route colors and route lengths are added. The 
reason for this two-stage approach is that destinations cards 
and double routes complement each other, and so do route 
colors and lengths. For example, if there are fewer double 
routes, a city is more likely to be cut off. This will 
negatively influence the players holding destination cards 
that contain that city. The main reason for separating the 
phases is to reduce the search complexity. Another reason 
is that changes in features from one phase may result in 
sudden swings in features from the other phase. The two-
phase approach avoids this by splitting the objective of the 
optimization between classes of features.  
 Each optimizer implements a simplified Monte Carlo 
Tree Search. The search ends when a complete assignment 
is found of which distance from the desired win ratio is 
consistently less than a given termination threshold. If no 
such assignment is found, the search returns the best 
complete assignment explored. At each step, the search 
tries to find an optimal value for a variable. It does so by 
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selecting the next unassigned variable and randomly 
selecting a set of possible values for it. The nodes 
corresponding to values that are not selected are labeled 
with a number slightly larger than the termination 
threshold. The two optimizers, which run within the same 
phase, exchange their candidate values to create a 
combined partial assignment. Each such partial assignment 
is extended to a complete assignment by randomly 
choosing possible values for the remaining variables. In 
phase one, the remaining features of the board (colors and 
lengths) are randomly selected to produce a full game 
board. In phase two, the complete assignment represents a 
full game board. Twenty games are played on the full 
game board, and then the distance between the average 
winning ratio of the played games and the desired winning 
ratio is calculated. The optimizers return the complete 
assignment if the distance is below the termination 
threshold. If the distance is above the termination 
threshold, each optimizer labels the node corresponding to 
the current value with the distance and moves to the next 
value. After trying all selected values without returning a 
complete assignment, the optimizer chooses the lowest 
labeled node from the current and previous steps and 
continues the search. By labeling the unselected values 
with a number slightly larger than the termination 
threshold, we ensure that as long as the selected values are 
labeled with numbers larger than the termination threshold, 
new values will be chosen.  
 The algorithm is guaranteed to terminate as it either 
finds an acceptable complete assignment or it exhausts the 
search space. There is a theoretical chance that the label of 
a node is between the termination threshold and the label 
for unselected nodes. In this case, the algorithm may cycle 
forever. We did not encounter such a case in our 
experiments. 
The Destination Value Optimizer (DO) 
The Destination Optimizer is provided with a set of 
candidate destinations and a set of possible values to be 
assigned to the destinations. The special value of -1 
denotes that the destination it was assigned to will not be 
part of the final game. 
The Single-Double Route Optimizer (SDO) 
This optimizer considers each pair of connected cities and 
decides whether to make the route connecting them double. 
It tries to find the optimum number of double routes 
between two extremes: having too few may result in very 
limited access to an important city, which is undesirable; 
having too many may remove conflicts over routes, 
making the game less competitive.   
 

   
Figure 2. Map building strategy. 

 The DO and SDO operate synchronously and share 
information after each choice. To simulate games, they use 
random route length and route color assignments. Since the 
random assignment of features produces a high variance of  
the game results, the termination threshold for these 
simulations was set to 0.2.  
 All the routes and destination cards are set at the end of 
phase one. Phase two proceeds to select the route lengths 
and colors. As per the requirements of TTR, double routes 
will be assigned the same length.  
The Route Length Optimizer (LO) and the Route Color 
Optimizer (CO) 
For each step, these optimizers select the best four choices 
of their respective feature to further explore. All the 
combinations of these choices, 16 in total, are evaluated 
through random simulation. The combination with the best 
average score is selected, and the corresponding length and 
color respectively are chosen by the optimizers.  

Experiments and Results 
We run three types of experiments: 
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• Generate a new game board on the underlying 
graph of the original TTR. In this case, we start 
with the underlying graph of the original USA 
board, and optimize the destination values, the 
double routes, the route lengths, and the route 
colors. 

• Generate a completely new game board. In this 
case, we apply the full map building strategy as 
described in the previous section. 

• Generate new game boards by connecting 3 
subgames and then optimizing. This is a variation 
of the previous case in which 3 independent 
subgames (corresponding to subgraphs produced 
by GO) are generated. These subgames are then 
connected and partially optimized to create the 
final game. 

 Notice that the last two experiments consist of 
generating completely new games. 
 To produce a reliable win rate, we simulate 1000 games 
on the generated game boards.  
 For each experiment, we compare the results with those 
obtained from entirely random game boards, which are 
produced by randomly selecting all the features added to 
the underlying graph. We estimate the distance of the 
random game boards by running 1000 simulations on 10 
randomly generated boards on the same underlying graph. 

Game Boards Generated by Optimizing The Orig-
inal Game Features 
We run a complete and a restricted version of optimization 
on the underlying graph of the original TTR game, USA 
board. 

The complete version optimizes all the features without 
restrictions. In the restricted one we impose an extra 
constraint on the length of a route: it can deviate at most 
one unit from the length of the original game. The reason 
for this restriction is to preserve some of the geographical 
distances between cities. It will be hilarious to have a map 
on which the distance between Dallas and Houston is six 
units while the distance between Los Angeles and El Paso 
is one.  

 The results presented in Tables 1 and 2 show that both 
types of optimization result in improvements over the 
original and randomly produced maps. The HA is favored 
in all cases. This seems to be related to the original design 
of the game, most probably linked to the value of 
destination cards. Fully optimizing the route lengths allows 
more room to adjust destination values. Thus this type of 
optimization produces the best results. 

In Figure 3, we present the map produced by the 
restricted optimization applied to the underlying graph of 
the original TTR. 

 
Figure 3. Restricted Optimized Ticket to Ride board. 

Agent Desired Original 
Game 
Board 

Complete 
Optimized 
Game 
Board 

Restricted 
Optimized 
Game 
Board 

OSTA 0.25 0.2025 0.215 0.212 
PA 0.25 0.0325 0.151 0.141 
LRJA 0.25 0.3045 0.251 0.243 
HA 0.25 0.4605 0.382 0.402 

Table 1. Comparison of average win ratios for original and 
optimized game boards generated on the original underly-

ing subgraph. 

Original 
Board 

Complete 
Optimized 
Board 

Restricted 
Optimized 
Board 

Random 
Board 

0.212 0.1068 0.121 0.1402 

Table 2. Comparison of average distances for original and 
optimized game boards generated on the original underly-

ing subgraph. 

Map Total 
Routes 

Avg. 
Dest. 
Card 
Value 

% 
Double 
Routes 

Total 
Trains 

Avg. 
Route 
Length 

Orig 100 11.6 28.2 307 3.70 
Rest 
Opt 

123 19.2 57.7 417 3.39 

Com 
Opt 

115 15.133 47.4 368 3.20 

Table 3. Comparison of features of original TTR board and 
the optimized versions. 

In Table 3, we present the comparison of main features in 
the original and optimized versions. As Table 3 shows, the 
destination values are increased, and so is the number of 
double routes. These changes are a disadvantage to the HA  

12848



Table 4. Comparison of route color distribution of original 
TTR board and the optimized versions. 

Lengt
h 

Point 
Value 

% 
Routes 
Original 

% 
Restricted 
Optimized 

% Complete 
Optimized 

1 1 9 11.4 20.0 
2 2 36 16.3 24.3 
3 4 20 27.6 13.0 
4 7 18 19.5 14.7 
5 10 8 17.1 13.9 
6 15 9 8.1 13.9 

Table 5. Comparison of route length distribution of origi-
nal TTR board and the restricted optimized versions.  

since there are more high value destinations for other 
agents to claim. Additionally, the HA cannot cut off high 
value routes since most are double.  
Total trains increase, but the average route length 
decreases. This modification limits the LRJA advantage. 
 In the original game, the total length of routes of each 
color but gray is the same. On the optimized board, routes 
of different colors have different distributions; for 
example, orange routes cover 16% of the total length, 
while red ones cover 8%. This creates an imbalance 
between the train cards, which will make some very 
desirable while others will be mostly avoided.  
 In the optimized game boards, there are many same 
color adjacent routes. This forces players to compete for 
these colors. We believe that this is an immediate result of 
the increase in the number of double routes, which reduces 
the competition on routes. In the optimized versions, the 
competition is veered towards cards. This gives equal 
opportunities to each player no matter what strategy they 
use. 
 In the original board, short routes are prevalent, and the 
most common ones are of length 2. The optimized one has 
a more balanced distribution of route lengths, but still 
favors the shorter ones. Longer routes are more difficult to 
build but are worth more points. We believe that the 
increase in the routes' length forces players to choose 

longer routes and thus diminishes the advantage the LRJA 
and the HA have on the original game. 

Table 6. Average win ratios for a game board with a gener-
ated Underlying Graph. 

Optimized Board Random Board 
0.10103 0.185 

Table 7. Comparison of average distance for random and 
optimized game boards with a generated Underlying 

Graph. 

Agent Desired Optimized 
OSTA 0.25 0.241 
PA 0.25 0.091 
LRJA 0.25 0.29 
HA 0.25 0.378 

Table 8. Average win ratios for a game board generated 
from 3 subgames. 

 Optimized Board Random Board  
0.134 0.178 

Table 9. Average distances for a game boards generated 
from  subgames.  

Game Boards with Generated Underlying Graph 
For this experiment, we used the Graph Optimizer to 
produce a new underlying graph. We then generate an 
optimized game board and 10 random game boards. On 
each board, we play 1000 games. While this represents 
only one experiment, we believe that it indicates that our 
approach produces balanced games. Running a single 
experiment requires more than 48 hours, and this is the 
only reason for the scarcity of data points. 

As shown in Tables 6 and 7, this game board is more 
balanced than those generated on the original underlying 
graph. We attribute these improvements to the performance 
of the Graph Optimizer, which aims to produce underlying 
graphs which are better suited for creating balanced board 
games. However, the PA is still far from having an even 
win rate.  
double routes, lengths, and colors. 

Game Boards Generated by Combining Subgames 
In this experiment, we start by optimizing the three 
subgraphs chosen by GO, thus producing three 
independent sub-games. We then connect the underlying 
graphs of these games in the same way in which GO does 

Color % Routes % Total trains 
Orig Rest 

Opt. 
Com 
Opt. 

Orig Rest 
Opt. 

Com 
Opt. 

Gray 44 11.4 10.4 30.2 10.0 12.0 
White 7 8.9 13.0 8.47 10.5 7.9 
Black 7 12.2 12.2 8.79 12.9 12.2 
Orange 7 14.6 10.4 8.47 16.1 12.8 
Red 7 8.9 8.7 8.79 8.6 6.8 
Pink 7 9.7 12.2 8.79 9.8 15.2 
Yellow 7 12.2 9.6 8.79 10.8 9.0 
Blue 7 11.4 12.2 8.79 10.5 10.9 
Green 7 10.6 11.3 8.79 10.5 13.3 

Agent Desired Optimized 
OSTA 0.25 0.3079 
PA 0.25 0.123 
LRJA 0.25 0.2907 
HA 0.25 0.277 
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it. The newly added edges are optimized for double routes, 
lengths, and colors. We run DO to optimize the 
destinations over the entire graph. Finally, we run a 
restricted LO, similar to what we did on the original TTR 
graph, to balance the route lengths. This step is required to 
create "geographically" consistent game boards. The 
results (presented in Tables 8 and 9) show an improvement 
over the randomly generated game boards. However, they 
are worse than those obtained in the previous experiment. 
We attribute this to the lack of global optimization for  

Interpretation of Results 
The results produced by our method are better than their 
random counterparts. The distance between desired and 
computed win ratios is low for optimized boards. In most 
cases, the HA is still favored, likely due to the wide availa-
bility of routes and combinations of destinations it can ex-
ploit. Also, due to the PA's inability to take more destina-
tions, we expect to see it typically perform worse than the 
other agents. This does, however, confirm that destinations 
play a strong role in the likelihood that a player wins. Even 
when there are many routes to use, the main component of 
gameplay, building destinations, strongly influences the 
game outcome. 
 We discovered some interesting patterns in the produced 
maps. Longer routes are generated, most likely to force all 
players to use them, thus reducing the advantage LRJA has 
from focusing on them. The maps tend to have several ad-
jacent routes of the same color. This creates increased 
competition on these colors among players whose destina-
tion cards require passing through a city that connects 
these same color routes. Thus, a feature of gameplay, not 
shuffling in train car cards until all are exhausted, becomes 
a forefront issue in the game. It does not arise in the origi-
nal game due to the large number of gray colored routes. 

Limitations 
Our inquiry assumes that a player follows the same strate-
gy throughout the entire duration of the game. This may be 
unrealistic for human players who may follow a certain 
strategy for most of the game and change it towards the 
end. For example, a player may follow the HA strategy for 
most of the game and, towards the end, switch to the strat-
egy of the LRJA. 
 The original game rules allow the use of double routes 
only when there are at least four players. Since we experi-
mented with four agents, we implicitly assumed that dou-
ble routes were present. Thus, our method, in its current 
form, does not extend to a game with two or three players. 

Improvements and Future Work 
Despite aiming for an equal winning ratio among all 
agents, all optimized boards favored the HA. In future in-

quires, it may be interesting to impose a reduced winning 
rate for this agent, hoping that it will result in a more bal-
anced game. 
 The boards produced by our method deviate substantial-
ly from the original game in terms of the number of routes 
and distribution of colors. This issue can be rectified by 
imposing extra constraints on optimizations, such as an 
upper bound on the total number of routes combined with 
lower bounds on the number of routes of each color.  
 In phase one of the proposed method, the colors and 
lengths of routes – required to produce a full game board- 
are randomly chosen. A better understanding of the influ-
ence of these factors on the winning ratio may produce a 
heuristic for selecting them. Such a heuristic can improve 
the estimation of the distance and reduce the number of 
simulations, which will decrease the running time of the 
method. 

Conclusions 
In this paper, we propose a method for generating new 
game boards for the Ticket to Ride Game, which allows 
selected player strategies to have more uniform chances of 
winning the game. The method consists of several phases 
in which different features of the game are optimized. We 
employed four different player strategies. Our experiments 
indicate that the new method produces games that do not 
favor or penalize any of the studied strategies. We interpret 
the modifications made by our method to the original TTR 
game and indicate how they help create a more even 
competing field for the studied agents. 
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