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Abstract

This study focuses on the Nesterov’s accelerated quasi-
Newton (NAQ) method in the context of deep neural net-
works (DNN) and its applications. The thesis objective is to
confirm the robustness and efficiency of Nesterov’s accelera-
tion to quasi-Netwon (QN) methods by developing practical
algorithms for different fields of optimization problems.

Introduction
Optimization forms the core in several areas of engineer-
ing, statistics, machine learning, neural networks, quantum
computing, fundamental sciences, etc. Hence there is a dire
need for solving large scale non-linear optimization prob-
lems. A good optimization algorithm is expected to perform
well across different types of problems (robustness) with
reasonable computation and storage costs (efficiency) and
less sensitivity to error and noise (accuracy). Gradient based
algorithms have been widely used in optimization and can be
categorized as (1) first order methods (eg. SGD, Adam) (2)
higher order methods (eg. Newton method, quasi-Newton
method) and (3) heuristic derivative-free methods (eg. co-
ordinate descent, SPSA), each with its own pros and cons.
Much progress has been made in the last 20 years in design-
ing and implementing robust and efficient methods and yet
there are many classes of applications where current state of
the art optimizers fails. In the era of immense data, the effec-
tiveness and efficiency of the optimization algorithms dra-
matically influence the popularization and application. To
this end, this thesis aims at developing NAQ based optimiz-
ers and demonstrate its practical robustness, accuracy and
efficiency for different applications in the ML/NN context.

Background
The solution to a mathematically modelled problem can be
obtained by optimizing the objective function subject to con-
traints on its variables. Given an objective function f(θk),
optimization algorithms iteratively minimize (or maximize)
until they terminate at the optimum solution θ∗.

min
θ∈Rd

f(θ) (1)
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First order gradient based methods have low computation
complexity but exhibit slow convergence. Contrarily, sec-
ond order methods such as the Newton’s method converge
quadratically, but incur high computation costs especially
with increase in dimensionality of the problem. Thus, quasi-
Newton (QN) methods (Nocedal and Wright 2006) such as
SR1 and BFGS have been widely used and the iterative pa-
rameter update minimizing (1) takes the form

θk+1 = θk − ηkHk∇f(θk), (2)

where Hk is a symmetric positive definite matrix approxi-
mated by the following BFGS formula.

HBFGS
k+1 = (I− ρkskyT

k )H
BFGS
k (I− ρkyks

T
k ) + ρksks

T
k ,
(3)

ρk =
1

yT
k sk

, sk = θk+1− θk, yk = ∇f(θk+1)−∇f(θk).

(4)
Several studies have demonstrated the robustness of the
BFGS and SR1 methods and its variants (Mokhtari and
Ribeiro 2015; Berahas et al. 2019). Recently, NAQ (Ni-
nomiya 2017) was proposed by applying the Nesterov’s ac-
celeration (Nesterov 1983) to BFGS as

θk+1 = θk + µvk+1 (5)

vk+1 = µvk − ηkHNAQ
k ∇f(θk + µvk), (6)

HNAQ
k+1 = (I−ρkskyT

k )H
NAQ
k (I−ρkyks

T
k )+ρksks

T
k , (7)

sk = θk+1−(θk+µvk), yk = ∇f(θk+1)−∇f(θk+µvk).
(8)

where µ is the momentum parameter and ∇f(θk + µvk) is
the Nesterov’s accelerated gradient. MoQ (Mahboubi et al.
2021) approximated∇f(θk+µvk) in NAQ as a linear com-
bination of past gradients. The acceleration of second order
methods pave promising scope to numerous applications and
is the focus of this research.

Research Overview
Training DNNs poses several challenges such as ill-
conditioning, hyperparameter tuning, overparmeterization
etc. Optimization in DNN, CNN, RNNs, and deep rein-
forcement learning (DRL), each encounter different difficul-
ties and challenges based on the problem considered. For
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example, RNNs popularly used in NLP, are powerful se-
quence models. But despite their capabilities in modeling
sequences, RNNs are particularly very difficult to train long
sequences with long-term dependencies due to the vanish-
ing and/or exploding gradient problem. Hence several algo-
rithms and architectures have been proposed to address the
issues involved in training RNNs. Similarly, training NNs in
reinforcement learning tasks is usually slow and challenging
due to the training data being temporally correlated, non-
stationary and presented as a continuous stream of experi-
ences rather than batches like in supervised learning train-
ing, that makes it more prone to unlearning effective fea-
tures over time. On the architecture front too, studies on
overparameterization (Arora, Cohen, and Hazan 2018) sug-
gest that increasing the depth of the NN architecture leads to
faster training as adding layers increases expressive power,
indicating that it is not an outcome of the so-called robust
optimizer itself. Further, overparameterization coupled with
large scale optimization and immense amount of data that
needs to be processed in training a large neural network can
in turn increase the computation and storage cost.

Thus this thesis aims to investigate if momentum acceler-
ated second order methods such as NAQ and MoQ outper-
form conventional methods and avoid overparameterization,
and more importantly, if they are robust, efficient and prac-
tical. To this end, we study the efficiency, robustness and ac-
curacy of the Nesterov’s accelerated quasi-Newton (NAQ)
based optimization in the following cases: (1) deep neural
network (full batch and stochastic) (2) time-series sequence
modelling and (3) deep reinforcement learning, and develop
practical algorithms for real-world problems.

Anticipated Research Contribution
• Study the behaviour of first order and second order quasi-

Newton methods on different NN problems.
• Investigate and propose NAQ based optimization as a so-

lution to these problems.
• Demonstrate robustness and efficiency of NAQ.
• Analyze computational cost and convergence.
• Investigate feasibility of Nesterov’s acceleration to other

algorithms in the quasi-Newton family.

Research Progress In this research, we began investigat-
ing the performance of NAQ in solving highly non linear
problems (Indrapriyadarsini et al. 2018, 2020b) with the
incorporation of a global convergence term. To facilitate
large scale stochastic optimization, we proposed a stochas-
tic NAQ variant and confirmed its robustness on feedfor-
ward NNs and CNNs along with a brief discussion on the
computational cost both in full and limited memory forms
(Indrapriyadarsini et al. 2019). To tackle the long sequence
modelling issue in training RNNs, we proposed a stochastic
NAQ variant with heuristic control that confirms the robust-
ness of the proposed method in training RNNs compared to
popular first order methods (Indrapriyadarsini et al. 2020a).
The computation cost is also shown to be in the order of
O(d) and thus comparable with first order methods. In (In-
drapriyadarsini et al. 2021), we extended the study to deep
reinforcement learning (DRL) for solving global routing, a

combinatorial optimization problem, and confirmed the ro-
bustness of our proposed method in the DRL case as well.

From the results obtained on the different classes of prob-
lems, we could confirm the practical robustness, accuracy
and efficiency of NAQ. Our next set of goals towards this
thesis include: (1) work on limited and stochastic variants
of MoQ as a means of reducing the computation cost of
oNAQ, (2) study the feasibility of the Nesterov’s accelera-
tion to other methods of the quasi-Newton family like SR1,
and (3) provide theoretical analysis on convergence to fur-
ther support the claims of our methods proposed thus far.
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