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Abstract

My doctoral research focuses on understanding semantic
knowledge in neural network models trained solely to predict
natural language (referred to as language models, or LMs),
by drawing on insights from the study of concepts and cate-
gories grounded in cognitive science. I propose a framework
inspired by ‘inductive reasoning,’ a phenomenon that sheds
light on how humans utilize background knowledge to make
inductive leaps and generalize from new pieces of informa-
tion about concepts and their properties. Drawing from exper-
iments that study inductive reasoning, I propose to analyze
semantic inductive generalization in LMs using phenomena
observed in human-induction literature, investigate inductive
behavior on tasks such as implicit reasoning and emergent
feature recognition, and analyze and relate induction dynam-
ics to the learned conceptual representation space.

Introduction
Humans often engage in ‘Inductive Reasoning,’ the use
of existing semantic knowledge to make inferences about
novel cases. For example, on encountering a new prop-
erty - ‘Robins have T9 hormones,’ one might generalize (or
project) it to all birds (Osherson et al. 1990). Inductive in-
ferences are often domain dependent—e.g. biological in-
formation may be projected across a taxonomy (robin and
swan), whereas behavioral information may project across a
shared property (hawk and tiger)—and may change during
a human’s development. Inductive reasoning sheds light on
the organization of human concept knowledge, and therefore
plays an important role in theories of semantic cognition.

Meanwhile, computational advances in the field of natu-
ral language processing (NLP) have led to the development
of complex neural network models of language (LMs). LMs
primarily represent language by encoding the distribution of
words in their contexts from large corpora, using a process
known as ‘pre-training.’ Their success on a range of higher
level semantic tasks, combined with their black-box nature
has given rise to a research program, the goals of which
are to develop an understanding of the knowledge LMs gain
from pre-training (Alishahi, Chrupała, and Linzen 2019). In
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this thesis, I attempt to contribute to this goal by developing
an inductive reasoning-based analysis framework to better
understand the synthetic semantic cognition of LMs.

Related Work
As LMs grow larger, so does their capacity to retrieve mem-
orized facts about the world (birds can fly), leading to the
development of the the paradigm known as ‘LMs as Knowl-
edge Bases’. This paradigm uses LMs to perform ‘common-
sense reasoning’ by simply querying pre-trained LMs with
prompts that elicit word predictions corresponding to the
retrieved fact (Petroni et al. 2019), or by fine-tuning and
evaluating LMs on knowledge bases (Bosselut et al. 2019).
This paradigm exclusively focuses on what aspects of world
knowledge are accessible through pre-training. Such an in-
quiry sheds important light on the access to long-term se-
mantic memory as it emerges from predicting words in con-
text. I hope to extend this line of research by focusing on
how pre-trained LMs use semantic knowledge to process
and generalize novel information, and to what extent their
behavior aligns to that in humans.

Inspired by research in cognitive science, my thesis ties in
the influential work of Rogers and McClelland (2004, R&M,
henceforth). R&M present a connectionist account of induc-
tive reasoning, where they describe a feed-forward network
that performs inductive projections of novel properties, and
displays patterns comparable to inductions in children across
multiple ages (Carey 1985). Despite this connection, my the-
sis pursues a line of research independent to that of R&M
as it exclusively relies on representations learned by models
from the statistics contained in language corpora. It therefore
targets the role played by language—more specifically, the
pre-training of LMs to predict words in context—in facili-
tating the learning of semantic knowledge as opposed to the
localist representations of R&M, who make no such com-
mitment. More recently, Sinha et al. (2019) introduced the
CLUTRR benchmark to study a different kind of inductive
reasoning—one that is rooted in formal logic—in LMs on
synthetic kinship information expressed as language. Unlike
CLUTRR, the inductive reasoning capacities considered in
my thesis make graded distinctions between generalizations
across two different concepts – i.e., generalization of a prop-
erty to robin may differ from that to penguins. Such distinc-
tions are not considered in CLUTRR, which instead focuses
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on discrete and logical generalization.

Inductive Reasoning with Language Models
I argue that a test of induction in LMs must satisfy two
desiderata: (1) The LM must perform a semantically mean-
ingful task that facilitates inductive reasoning – i.e., during
induction, the LM must accept novel information about con-
cepts (robins can queem), and then produce an output that
can be used to conclude about how it applies the informa-
tion to other concepts (canaries can queem vs. giraffes can
queem); and (2) It must cast induction as a probabilistic in-
ference – induction experiments involve supplying humans
with novel ‘premises’, followed by an investigation of how
likely they think a ‘conclusion’ is, usually interpreted as a
conditional probability. Based on the aforementioned con-
straints, I propose to fine-tune the LMs under investigation
to classify generic beliefs as true (cats have fur) or false
(dogs can fly). The beliefs will be sourced from a belief-
bank, a data structure consisting of facts about the world,
retrieved from existing commonsense knowledge-bases that
represent concepts and their properties. Novel information
will be formed by linking existing concepts to properties
consisting of nonce words (e.g., dax, fep, queem, etc.). Dur-
ing induction, the novel information will be processed by
the LM using a standard backpropagation step, repeated un-
til correct classification is achieved. Next, the LM’s weights
will be frozen and the LM will be evaluated over a range of
different conclusion statements by investigating its probabil-
ity for the true label during a forward pass.

Using this general framework for simulating induction in
LMs, I aim to answer the following research questions:

RQ1: What kinds of inductive generalizations about con-
cepts are made by LMs? To answer this question, I pro-
pose to devise induction experiments targeting findings from
the human-induction literature (Osherson et al. 1990; Kemp
and Tenenbaum 2009). The goal of these experiments is to
zero in on the kinds of semantic inductive biases represented
in the LMs’ generalization capacities, and compare them to
phenomena that drive induction in humans.

RQ2: To what extent do LMs recognize and use emergent
features during induction? Capturing implicit knowl-
edge is a long-standing goal for commonsense reasoning
(Bosselut et al. 2019; Talmor et al. 2020). This question tar-
gets whether LMs implicitly use features that emerge in the
induction environment. For instance, the property of flight is
implicitly encoded in the set of concepts: {robins, bats, air-
planes}, which may share the same novel property during
induction. The objective here is to quantify the tendency of
LMs to generalize the novel property to other concepts that
possess the emergent feature (e.g., butterflies).

RQ3: How do the inductive generalization capacities of
LMs relate to their representational space? In order to
extend the interpretability of my methods and yield a mech-
anistic insight on how LMs characterize novel information,
I propose to measure the correspondence between the in-
duction dynamics (loss during induction backpropagation)
of the LMs and their representational geometry.

Objective Timeline
RQ1 October 2021 - February 2022
Proposal Defense January/February 2022
RQ2 March 2022 - August 2022
RQ3 September 2022 - January 2022
Thesis Writing January 2023 - February 2023

Table 1: Research Timeline

Taken together, the above questions target a comprehen-
sive exploration of induction in LMs, with experiments rang-
ing from tests of hallmark phenomena in human-induction
literature, to implicit reasoning and learning dynamics.

Preliminary Work and Research Timeline
In my previous research (Misra, Ettinger, and Rayz 2021), I
investigated induction in LMs using experiments that con-
form with the ‘LMs as knowledge bases’ paradigm, with
a focus on whether typicality of concepts (e.g., robins are
more typical birds than are penguins) manifests in the word
prediction capacities of LMs. My current research involves
training LMs on the true/false task using data from exist-
ing knowledge-bases, as well as running preliminary experi-
ments that target the presence of specific inductive biases in
LMs (part of RQ1). Table 1 shows my research timeline.

References
Alishahi, A.; Chrupała, G.; and Linzen, T. 2019. Analyzing
and interpreting neural networks for NLP: A report on the
first BlackboxNLP workshop. Natural Language Engineer-
ing, 25(4): 543–557.
Bosselut, A.; Rashkin, H.; Sap, M.; Malaviya, C.; Celikyil-
maz, A.; and Choi, Y. 2019. Comet: Commonsense trans-
formers for automatic knowledge graph construction. ACL.
Carey, S. 1985. Conceptual Change in Childhood. MIT
press.
Kemp, C.; and Tenenbaum, J. B. 2009. Structured statis-
tical models of inductive reasoning. Psychological review,
116(1): 20.
Misra, K.; Ettinger, A.; and Rayz, J. T. 2021. Do language
models learn typicality judgments from text? CogSci.
Osherson, D. N.; Smith, E. E.; Wilkie, O.; Lopez, A.; and
Shafir, E. 1990. Category-based induction. Psychological
review, 97(2): 185.
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