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Abstract

Out-of-distribution (O.O.D.) generalization remains to be a
key challenge for real-world machine learning systems. We
describe a method for O.O.D. generalization that, through
training, encourages models to only preserve features in the
network that are well reused across multiple training do-
mains. Our method combines two complementary neuron-
level regularizers with a probabilistic differentiable binary
mask over the network, to extract a modular sub-network
that achieves better O.O.D. performance than the original net-
work. Preliminary evaluation on two benchmark datasets cor-
roborates the promise of our method.

Introduction

Recent work has uncovered that neural networks that are
learned on observational data are often prone to spurious
correlations, and rely on shortcuts learned from the training
data for solving the task instead of modelling the underlying
mechanism (Geirhos et al. 2020). This leads to them fail-
ing to transfer to more challenging testing conditions, such
as real-world scenarios. Recent works show that modularity
is a useful inductive bias that can lead to better systematic
generalization (Goyal et al. 2020; Csordás, van Steenkiste,
and Schmidhuber 2021). We seek to understand whether net-
works can be structurally enforced to prefer modular solu-
tions. In this context, (Zhang et al. 2021) show that a fully-
trained network contains sub-networks that are less suscep-
tible to spurious correlations, and introduce a method to ex-
tract the structure from a trained network. We study whether
we can obtain such solutions through training itself, by regu-
larizing the network to avoid fitting spurious correlations in
the data. We introduce objectives that explicitly incorporate
the structure of the network and induce modular structures
to be formed at every layer of the network. Our method en-
forces the network to be a compositional hierarchy of expert
modules, promoting the emergence of features that are spe-
cialized and reused across multiple training domains in the
network. We show that our method boosts the O.O.D. per-
formance of networks across two benchmark datasets.
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Method
We first motivate our method. A deep neural network con-
tains several layers of neurons, each serving as a feature for
every neuron in the next. Every fundamental sub-function
(e.g. a single convolutional filter) in the network is associ-
ated with separate neurons that arise out of transformations
(e.g. dot product) of the function with the input. Our aim
is to discover features that are well used (activated) across
multiple training domains, as well as detecting and prevent-
ing redundant features from being present in the network.
Hence, specialization and reuse are two key principles that
underlie our method that we describe below.

First, our objective for specialization regularizes such that
every feature in the network should be a different compo-
sition of the available sub-features. That is, every feature
should fit as few features as necessary, and should differ as
much as possible in the features fit, minimizing redundancy.
However, directly encouraging this on the weights would un-
necessarily constrain the power of the network.

Hence, we use a differentiable probabilistic binary mask
πi over the network weights, relaxed by the Gumbel-
Sigmoid estimator (Jang, Gu, and Poole 2017). Each value
πi ∈ [0, 1] represents the probability of sampling weight wi.
During every training iteration, once the mask is sampled, it
is binarized as mi = {sigmoid(πi) > 0.5} ∈ {0, 1}. Once
trained, we obtain deterministic masks by binarizing the fi-
nal values, hence extracting a subnetwork described by the
mask.

As part of our specialization objective, we impose the
following regularization of the continuous masks of the
weights:

S1(π) =
L∑

l=1

Nl∑
p=1

Mp∑
i=1

πi

2

(1)

where L denotes the number of layers, Nl - the number of
features in the layer, Mp - the number of outgoing weights
from feature p.
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Note that we minimize the (square of) sum of sampling
probabilities of weights outgoing from each feature in the
current layer, allowing it to be fit sparsely by only a few
required features from above. Consequently, this encourages
features in the next layer to fit a minimally overlapping set of
features from the current layer, leading to each of the former
specializing in their underlying function.

Although this objective would encourage specialization,
every feature in the current layer may not be necessary, as
extra features may correspond to unnecessary functions. The
network must automatically be able to decide how many fea-
tures to keep. However, constructing an objective that can
be used to restrict the number of features in a layer is non-
trivial, since in the worst case, every feature may be neces-
sary depending on the task and model capacity at hand.

Here, we hypothesise that the necessary features are
those that are reused across domains by multiple special-
ist functions above. Consequently, we regularize to preserve
only those features that have a large number of outgoing
weights sampled with high-probability, discarding features
that are not well reused. We enforce this through the follow-
ing objective:

S2(π) =

L∑
l=1

Nl∑
p=1

√√√√Mp∑
i=1

π2
i (2)

This term is inspired from that of group lasso regulariza-
tion (Kim and Xing 2020); applying this term can effectively
zero out the masks of all the outgoing weights of some fea-
tures. Unlike that of group lasso that regularizes the weights
and can have overlapping groups, we apply it on the masks
and do not have any overlapping groups.

Our final objective is, therefore,

L = `(θ) +R(θ) + α ∗ S1(π) + β ∗ S2(π)

where ` is the loss function used for the task, R being a
general-purpose regularizer (eg. L2), and α& β, the weights
of each of our regularization terms.

Training with the regularized differentiable mask on data
consisting of multiple training domains conditionally acti-
vates only those weights shared across multiple domains.
Consequently, the sub-network contains features that are in-
variant to the domain, and hence aids O.O.D. generalization.

Preliminary Results
We present preliminary results of our method on two bench-
mark O.O.D. generalization datasets - Colored MNIST (C-
MNIST) and Rotated MNIST (R-MNIST). Each dataset is
artifically biased in such a way that in the training dataset,
a certain degree of correlation is induced between spurious
variables and the class label. In the test dataset, the corre-
lation is reversed. The goal of O.O.D. generalization is to
encourage the model to fit the invariant features, ignoring

Model Method C-MNIST R-MNIST

CNN

ERM 35.23 96.5
ERM + modReg 38.20 96.7
IRM 67.69 97.3
IRM + modReg 71.88 98.1

MLP

ERM 34.27 94.45
ERM + modReg 36.91 95.43
IRM 72.58 97.4
IRM + modReg 75.59 97.9

Table 1: Results of the proposed method on multiple archi-
tectures, across datasets.

other correlated variables, training and validating only on
in-distribution data.

Our method is versatile, and can be used on top of any
algorithm. Here, we apply our method on top of empirical
risk minimization(ERM), the standard approach to machine
learning problems, and invariant risk minimization (IRM)
(Arjovsky et al. 2020), a method that estimates invariant,
causal predictors from multiple training environments.

Preliminary results shown in table 1 verify the effec-
tiveness of our method. Our method gives consistent gains
across the two datasets and architectures considered. In par-
ticular, our gains give considerable boosts in the heavily
biased C-MNIST dataset, and also improves performance
in the R-MNIST dataset in which existing methods have
reached their potential.

Future Work
We plan to scale up our method and test its effectiveness on
larger datasets. Further, we also plan to take our method for-
ward and evaluate on larger architectures such as ResNets,
and on top of other existing O.O.D. generalization methods.
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