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Abstract

This paper studies the over-parameterization of deep neu-
ral networks using the Fisher Information Matrix from in-
formation geometry. We identify several surprising trends in
the structure of its eigenspectrum, and how this structure re-
lates to the eigenspectrum of the data correlation matrix. We
identify how the eigenspectrum relates to the topology of the
predictions of the model and develop a “model reduction”
method for deep networks. This ongoing investigation hy-
pothesizes certain universal trends in the FIM of deep net-
works that may shed light on their effectiveness.

Introduction
Deep networks are mysterious. Classical statistics dictates
that these massively over-parametrized models, i.e., the
number of weights is much larger than the number data,
should overfit to the training data. However, deep networks
essentially do not overfit, this is a phenomenon known
as “benign over-fitting” (Bartlett et al. 2020). This short
paper presents our investigations into understanding over-
parameterization. Our contributions are as follows:

1. Deep networks are known to have a large number of re-
dundant weights; roughly about 95% of the weights can be
pruned or heavily quantized to reduced precision after train-
ing without changing the predictions of the model on the test
data. At the same time, results like the Lottery Ticket Hy-
pothesis suggest that one cannot simply train the resultant
smaller deep network with random initializations. We study
this phenomenon under the lens of “sloppy models”, a
rather universal phenomenon discovered across statistics,
physics, biology, and chemistry (Transtrum, Machta, and
Sethna 2011) suggesting that nonlinear parametric models
fitted to naturally occurring data are bound to have such re-
dundant weights. To study this, we formalize a “model man-
ifold” which is the manifold of the network’s predictions on
n training data for different weight configurations.

2. We identify a peculiar relationship between the
eigenvalues of the data auto-correlation matrix and the
eigenvalues of the Fisher Information Matrix (FIM).
Roughly speaking, while the former tells us the how differ-
ent samples in typical datasets used in machine learning are
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similar to each other, the latter tells us how the output of a
deep network is also similar on different images in the train-
ing set. Surprisingly, both of these matrices are not only sim-
ilar but their eigenspectra are extremely “sloppy” – very few
eigenvalues are large (less than 5%) and capture the bulk
of the eigenspectrum while the remainder are dramatically
smaller.

3. We perform model reduction, i.e., project a deep net-
work into a subspace of simpler deep networks using the
eigenvectors of the FIM. We observe that such a projection
preserves both the predictions of the network on the data and
the topology of the model manifold.

Geometry of Model Manifolds
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Figure 1: Manifold Structure of a Sloppy Model

Consider a nonlinear regression problem on dataset D =
{(xi, yi)}ni=1 where a deep network with weights w ∈ Rp is
fit to predict targets ŷi = f(xi;w). Predictions on the train-
ing set are a point z(w) = [ŷ1, . . . , ŷn] in n-dimensional
space parameterized by w (left panel, Fig. 1). The space of
all predictions, M = {z(w) : w ∈ Rp} is called the model
manifold (right panel Fig. 1). A Euclidean ball in weight
(w) space skews and stretches when seen in the prediction
(z(w)) space. The map between the two spaces is given by
the Jacobian of the model, Jij = ∂zi/∂wj .

Like the Euclidean metric determines distance between
weights w,w′ ∈ Rp, the Fisher Information Matrix (FIM)
g ∝ J>J is the metric on the model manifold. The in-
finitesimal distance on the manifold turns out to be ds2 =∑p

i,j=1 gijdwidwj (Amari 2016). Thus, the FIM allows us
to understand when two deep networks w,w′ predict sim-
ilarly on inputs even if weights are far away in the Eu-
clidean weight space. In particular, large eigenvalues of
the FIM correspond to large changes in the predictions
z despite small changes in the weights in the Euclidean
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space. Such directions are “stiff directions”. Small eigen-
values of the FIM correspond to small changes in predic-
tions z even if the weights undergo large changes in Eu-
clidean space. Such directions are “sloppy directions”.
This theory can also be applied to classification using z =

[
√

pw(y1 | x1), . . . ,
√
pw(yn | xn)] where pw(y|x) is the

softmax output. Finally, to ground intuition, note for linear
regression, g ∝ XX>, the data autocorrelation matrix.
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Figure 2: Eigenspectra of FIM at beginning (red), middle
(green) and end (blue) of training compared to data covari-
ance matrix XX> (black dashed line) for different prob-
lems and architectures, (a) 9-layer CNN on CIFAR-10 im-
age classification dataset, (b) 2 layer MLP on Boston Hous-
ing regression dataset, (c) different MLPs (#layers, #hidden
neurons) on Boston Housing at end of training, and (d) per-
ceptron from (b) on a random dataset with inputs as Gaus-
sian random variables and outputs are sampled randomly.

The experiments in Fig. 2 conducted based on the ob-
servations above reveal surprising properties. Eigenspectra,
of both data and FIM, in (a) and (b) span exponentially
larger magnitudes: low magnitude eigenvalues specify ex-
actly the sloppy directions described above. Eigenspectra
for a random dataset (d) is not as sloppy as the others –
only drops by about one to two orders after the initial drop
(despite (b) having the same architecture), indicating that
input data sloppiness is necessary for model weight re-
dundancy. Eigenspectra in (c) of different networks trained
on the same dataset are very similar: slope of the linear
(sloppy) range is similar for all.

There is a peculiar sharp drop in the eigenspectrum at
the right, most prominently for (a) and (b); most of these
eigenspectra have less than 5% stiff eigenvalues; we hy-
pothesize that this property is related to the topology of
the model manifold. As training progresses, the trace of
the FIM increases monotonically – sloppy eigenvalues in-
crease in magnitude while stiff eigenvalues are essentially
unchanged, suggesting the network may be learning rep-
resentations correlated with sloppy eigenvectors of XX>

while discarding extremely sloppy eigenvalues because
there’s less information about these modes; this is not so
for the random dataset in (c). This leads us to the hypothe-
sis that the data’s structure ultimately controls FIM structure
(and network behavior).

Model Reduction
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Figure 3: Each point is a datum colored by correct label on
the CIFAR-10 dataset. (a) Highly reduced model retaining
the top 1% eigenvectors of FIM makes poor predictions on
all samples and is topologically a line. (b) Model that re-
tains the top 5% eigenvectors has similar topology to the
full model (c) and obtains similar accuracy on the validation
set (75% vs 77 %).

The FIM eigenvectors determine the local coordinates
of the model manifold. We can therefore project a trained
model on the top few eigenvectors of its FIM to “reduce”
it, by keeping the most important prediction directions of
the model manifold and set sloppy directions to zero. We
write the weight as w =

∑p
i=1 ciei =

∑p
i=1〈w, ei〉ei ≈∑k

i=1〈w, ei〉ei where ei are the FIM eigenvectors sorted by
eigenvalue magnitude. We then use a dimensionality reduc-
tion method known as Intensive Principal Component Anal-
ysis designed for the isometric embedding of probabilistic
models (like the predictions z) (Quinn et al. 2019) to com-
pare the original deep network and reduced ones; this is
shown in Fig. 3. Differences in topological complexity be-
tween models indicate there may exist a critical threshold
of eigenvectors needed to ensure the topological (and pre-
dictive) accuracy of the reduced model. This threshold may
depend on the ratio of stiff to sloppy eigenvalues in XX>.
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