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Abstract

Lack of explainability in artificial intelligence, specifically
deep neural networks, remains a bottleneck for implement-
ing models in practice. Popular techniques such as Gradient-
weighted Class Activation Mapping (Grad-CAM) provide a
coarse map of salient features in an image, which rarely
tells the whole story of what a convolutional neural network
(CNN) learned. Using COVID-19 chest X-rays, we present a
method for interpreting what a CNN has learned by utilizing
Generative Adversarial Networks (GANs). Our GAN frame-
work disentangles lung structure from COVID-19 features.
Using this GAN, we can visualize the transition of a pair of
COVID negative lungs in a chest radiograph to a COVID pos-
itive pair by interpolating in the latent space of the GAN,
which provides fine-grained visualization of how the CNN
responds to varying features within the lungs.

Introduction
Interpreting convolutional neural networks (CNNs) has
gained significant relevance with the surge of deep learning-
enabled COVID detection models. However, many of these
models have been found to be biased and misled by valida-
tion and visualization techniques such as Grad-CAM (De-
Grave, Janizek, and Lee 2021; Selvaraju et al. 2017). Gen-
erative Adversarial Networks (GANs) show promise in fea-
ture visualization as they have gained considerable popular-
ity in generating photo-realistic images (Goodfellow et al.
2014). A GAN’s generator learns to transform points from
a low-dimensional manifold known as the latent space into
an image via a vector of randomly sampled numbers. Af-
ter training, it can be observed how one image morphs into
another by linearly interpolating between the two images’
corresponding latent vectors. This provides the basis for our
proposed method of feature visualization.

Methods
Our method first relies on a pre-trained classifier that we
wish to visualize. We specifically use a VGG16 model
trained to ∼ 75% accuracy on a private COVID chest X-ray
dataset of 128x128 grayscale images. The GAN framework
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Figure 1: Generator (G) takes in structural latent vector
z1 and class latent vector z2 to produce fake chest X-
rays fed into the discriminator, along with real samples x.
The classifier (C) provides feedback for generating class-
discriminable images.

is inspired by the Auxiliary-Classifier GAN (Odena, Olah,
and Shlens 2017), except we decouple the classifier from the
discriminator, and employ a different latent vector scheme
(see Figure 1). The generator carries out supervised disen-
tanglement by taking in a latent vector z1 that corresponds
to lung structure, and a class information vector z2. The vec-
tor z1 is sampled from a spherical normal distribution. The
z2 sampling scheme relies on the intuition that COVID man-
ifestations are not deterministic: the same pair of healthy
lungs will retain their lung structure even with COVID, but
COVID features can present in many ways within the lungs.
Thus, when the class is COVID-negative (class = 0), z2 is
a vector of zeros, otherwise (class = 1) it is drawn from the
spherical normal distribution to represent a continuous man-
ifold of COVID features.

During training, the following objective is optimized:

min
G

max
D

E
x∼px

[logD(x)]

+ E
z1∼pz1 ,y∼py

[log(1−D(G(z1, y)))]

− E
z1∼pz1

,y∼py

[log(pc(y|G(z1, y)))]

(1)

The first two terms correspond to the typical min-max
game between the generator G and discriminator D, where
x corresponds to data observations, z1 is the structural latent
vector, and y is the class that is encoded in the z2 vector. The
third term relates to the generator learning to create images
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that the classifier C can correctly classify as COVID nega-
tive or positive. In this formulation, the generator is trained
with the discriminator to produce high-fidelity images, while
getting feedback from the frozen classifier to incorporate
class-specific features. It has been shown that minimizing
this third term roughly approximates the KL divergence be-
tween the classifier’s learned distribution pc(y|x) and the
generator’s pg(y|x) (Gong et al. 2019). Thus, the generator
provides a representation of what the classifier has learned.

After training, the generator can be leveraged to explain
the classifier. Given a COVID-positive image x, the latent
vectors can be reconstructed by optimizing:

arg min
z1,z2

MSE(G(z1, z2), x) + BCE(C(G(z1, z2)), C(x))

(2)
The latent vectors z1 and z2 are found via gradient descent.
The objective is to minimize the mean-squared error be-
tween the generated image and the ground-truth in addition
to the binary cross-entropy between the classifier’s output
on both images. These two terms can be balanced with con-
stant coefficients. After z1 and z2 are found, we can rely on
the sampling scheme for z2, changing it to

−→
0 to convert the

COVID-positive lungs to COVID-negative.
Finally, we traverse the latent space to visualize how the

classifier’s output changes with the interior lung pathology.
We interpolate through the latent vector z2 with steps n at a
rate of λwhile keeping the lung structure constant with z1 by
looking at the outputs of G(z1,

−→
0 + nλz2), for n = 1, 2, ...

Experiments and Results
After training the generator for 1000 epochs, we evalu-
ate how well z2 maps to COVID features. We generate
4 samples from the same lung structure z1, generating 1
COVID negative lung with z2 =

−→
0 and 3 positive with

z2 ∼ N(0, I). This is repeated 1000 times, and all samples
are fed into the classifier. The classifier’s predictions match
the class fed into the generator with 91.15% ± 0.09 accu-
racy. Given that random guessing would yield 50%, the z2
sampling scheme seems to consistently incorporate COVID
features as per the classifier.

When interpolating through the z2 latent space between
pairs of COVID negative and positive lungs with the same
z1, the classifier’s softmax probability for COVID positive
monotonically increases as z2 moves away from

−→
0 , which

suggests that the z2 latent space is structured such that
−→
0

corresponds to the mean of a highly dense COVID negative
probability region. This can be exploited in feature visual-
ization. After reconstructing the COVID positive image and
its negative pair with high confidence (as seen in Figure 2a),
we can observe the softmax probabilities over the outputs
as we morph the negative image into a positive (Figure 2b).
Thus, the images across the decision boundary can be ob-
served as the classifier’s prediction changes. Compared to
Grad-CAM (Figure 2c), traversing through the latent space
provides more fine grained feature visualization and holds
more explaining power.

(a) Reconstructing an original, real COVID positive im-
age and turning it into negative with the generator.

(b) Interpolating through the latent space between the re-
constructed pair of lungs with COVID and without.

(c) Pixel-wise difference between the last and first im-
ages in the latent interpolation highlights salient, chang-
ing regions. Compare against Grad-CAM to the right.

Figure 2: Running through the proposed feature visualiza-
tion pipeline. Classifier’s softmax outputs are below each
example.

This framework can inspire applications beyond chest ra-
diographs, particularly situations that reflect spatially dis-
tributed intensity profiles; from satellite images to electron
microscopy and medical imaging datasets. Observing struc-
tural changes via latent interpolation can provide insight into
how the classifier responds to these changing features.
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