
Reinforcement Learning Explainability via Model Transforms (Student Abstract)
Mira Finkelstein1, Lucy Liu2, Yoav Kolumbus1,

David C. Parkes2, Jeffrey S. Rosenshein1, Sarah Keren3

1 The Hebrew University of Jerusalem, Benin School of Computer Science and Engineering
2 Harvard University School of Engineering And Applied Sciences

3 Technion - Israel Institute of Technology, Taub Faculty of Computer Science
mirafinkel@gmail.com, lliu@college.harvard.edu, yoav.kolumbus@mail.huji.ac.il,

parkes@eecs.harvard.edu, jeff@cs.huji.ac.il, sarahk@cs.technion.ac.il

Abstract

Understanding the emerging behaviors of reinforcement
learning agents may be difficult because such agents are of-
ten trained using highly complex and expressive models. In
recent years, most approaches developed for explaining agent
behaviors rely on domain knowledge or on an analysis of the
agent’s learned policy. For some domains, relevant knowl-
edge may not be available or may be insufficient for produc-
ing meaningful explanations. We suggest using formal model
abstractions and transforms, previously used mainly for expe-
diting the search for optimal policies, to automatically explain
discrepancies that may arise between the behavior of an agent
and the behavior that is anticipated by an observer. We for-
mally define this problem of Reinforcement Learning Policy
Explanation (RLPE), suggest a class of transforms which can
be used for explaining emergent behaviors, and suggest meth-
ods for searching efficiently for an explanation. We demon-
strate the approach on standard benchmarks.

Introduction
A significant limitation of AI models is the performance-
transparency trade-off. As the inner workings of a model
increase in complexity, it becomes more powerful, but the
process through which it makes decisions becomes harder
to understand. The Explainable Artificial Intelligence trend
is particularly prevalent in reinforcement learning (RL) and
deep reinforcement learning (DRL), where an agent au-
tonomously learns how to operate in its environment. There-
fore, in order to allow humans to collaborate with them ef-
fectively, it is important to develop methods for reasoning
and explaining the agents’ behaviors.

While there has been a variety of recent works on explain-
ability of DRL, most of these methods do not exploit the full
formal model of the environment, typically modeled as a
Markov Decision Process (MDP), but instead focus on one
element of the model or reasoning about the structure of the
underlying network.

In this work, we suggest a novel approach to explainabil-
ity that makes use of formal transforms of the underlying en-
vironment to automatically generate explanations of emerg-
ing behavior. As is common in most RL work, we assume
the stochastic environment is modeled as a factored Markov

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Reinforcement Learning Policy Explana-
tion model (Right), and Taxi domain example (Left) where
the agent’s anticipated policy depicted by the green arrow,
and the actual one by the red arrow.

Decision Process (MDP). This makes it possible to gener-
ate explanations without relying on domain knowledge, and
instead, using transforms (abstractions) used so far in the
literature to expedite RL and planning solutions. While for
planning, the benefit of such transforms is in highlighting
the features of the environment that influence the solution
quality and time, we use them to isolate features of the envi-
ronment that cause an agent to deviate from a behavior that
is anticipated by an observer.

We consider an explainability setting, which we refer to
as Reinforcement Learning Policy Explanation (RLPE), as
comprised of three entities: an actor, who is an agent oper-
ating in the environment, an observer, who has some antici-
pation about the behavior of the actor that may not be met by
the actual behavior, and an explainer, who wishes to clarify
the discrepancy between the anticipated and actual behavior.

The contributions of this work are threefold. First, we
present the first use of formal model transforms and abstrac-
tions to produce explanations of RL agent behaviors. Sec-
ond, we present a formal definition of the Reinforcement
Learning Policy Explanation (RLPE) problem and specify
classes of state and action abstractions that can be used to
produce meaningful explanations. Finally, we implement
our approach and provide an empirical evaluation of this ap-
proach on a set of standard RL benchmarks.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12943



MDP Transforms as Explanations
Definition 1 A Reinforcement Learning Policy Explana-
tion (RLPE) model is defined by the tupleR = 〈M,A, π̃, T 〉,
where:

• M is an MDP representing the environment,
• A : M → Π the actor, which is associated with an RL al-

gorithm that it uses to compute a policy π ∈ Π ,
• π̃ is a set of possible anticipated partial policies defined

over M an observer expects the actor to follow and,
• T : M → M is a finite set of transforms.

The explanation is generated by searching for a set of
MDP transforms such that the actor’s behavior in the mod-
ified model aligns with the observer’s expectations. If the
transition from the original to the transformed environment
is meaningful, the difference between the models can help
the observer reason about the actor’s behavior, thus repre-
senting an explanation. To account for different modifica-
tions that can be applied, we define a transform as any map-
ping T : M 7→ M that can be applied to an MDP to produce
another MDP. The anticipated behavior of the observer is ex-
pressed as a partial policy describing what the observer ex-
pects the actor to do in a subset of its reachable states.

Clearly, for any two policies, state and action mappings
can be applied to cause any policy to satisfy another policy.
In order to produce valuable explanations, we need mean-
ingful transforms that are applied to the underlying MDP,
which change it in a way that highlights the elements of the
model that cause unexpected behaviors in the actor’s policy.
Such transforms are suggested in our evaluation section.

Empirical Evaluation
We used three domains: one deterministic Taxi domain
(TAXI) described in Fig. 1 and two stochastic domains:
Frozen Lake (FROZEN) and Apple Picking (APPLE) 1.
Observer: We consider an observer which has partial
knowledge about the environment. For all environments we
assume that the observer anticipates that the actor follows an
optimal policy in the observer’s partial model. We compute
the observers anticipated policy using a breadth-first search,
using a determinization for stochastic domains.
Actor: We use the DQN, SARSA and CEM algorithms,
from the keras-rl library2 to represent the actor. Note that
we could use any other algorithm since our framework is
agnostic to the method used by the actor. We trained the
agents for 600,000 episodes for all domains, each with 60
maximum steps per episode. Our experiments were run on a
cluster using a mix of CPUs, with 4 cores using 16GB RAM.
Explainer: For the explainer, we use the following trans-
forms: most likely outcome which is a special case of single-
outcome determinization (Yoon, Fern, and Givan 2007), pre-
condition relaxation as variant of the usage by Sreedharan
et al. (2020) and all outcome determinization suggested by
Keller and Eyerich (2011). We implemented all three trans-
forms as atomic transforms that each modify a single ac-
tion. We used three methods for searching for explanations,

1Further details described in the supplementary material
2https://github.com/keras-rl/keras-rll

BASE PRE-TRAIN CLUSTER
sol time sol time sol time

DQN
TAXI 99% 5.5h 95% 3h 98% 1h

FROZEN 100% 2h 0% 2h 79% 0.5h
APPLE 98% 6h 94% 4h 93% 1.5h

SARSA
TAXI 100% 5h 97% 2.5h 98% 1h

FROZEN 85% 3h 0% 3h 81% 0.5h
APPLE 99% 6.5h 96% 4h 93% 1.5h

CEM
TAXI 95% 3h 93% 2.5h 91% 0.75h

FROZEN 50% 0.5h 50% 0.5h 74% 0.25h
APPLE 92% 4h 88% 3h 78% 1h

Table 1: Comparing method performance.

which are detailed in supplementary materials. The BASE
Dijkstra search, PRE-TRAIN Dijkstra search in which we
bootstrap the learning in the modified environment by us-
ing the policy on the original environment. We also prune
transforms that do not directly effect the anticipated policy.
The third method, CLUSTER, computes values of transform
clusters.

Results
Table 1 compares the performance of the different search
methods, showing the ratio of instances that found the se-
quence of transforms that yields the anticipated policy (de-
noted as “sol”) and the average computation time in half
hour intervals (denoted as “time”) for the instances that were
solved by all approaches. The results show that, as ex-
pected, the exhaustive BASE method outperforms the two
other methods in terms of ratio of instances solved. How-
ever, it consumes up to 5 times more computation time. In
addition, although the PRE-TRAIN and CLUSTER methods
prune transform sequences heuristically, the compromise in
terms of solved instances is negligible. We assume that high-
lighting the different parts of the factored MDP model can
be a meaningful explanation. Nevertheless, one of our next
steps is to evaluate this assumption on human users.

There are various ways to extend our approach. First,
while this work uses a restrictive satisfaction relation that re-
quired a complete match between the anticipated policy and
the actor’s behavior, it may be useful to use more flexible
qualitative evaluation metrics for satisfaction. Secondly, we
plan to extend this approach to explain behaviors of agents in
multi-agent domains and to add transforms that are relevant
to both collaborative and adversarial multi-agent settings.

References
Keller, T.; and Eyerich, P. 2011. A Polynomial All Outcome
Determinization for Probabilistic Planning. In ICAPS.
Sreedharan, S.; Soni, U.; Verma, M.; Srivastava, S.; and
Kambhampati, S. 2020. Bridging the Gap: Providing
Post-Hoc Symbolic Explanations for Sequential Decision-
Making Problems with Black Box Simulators. CoRR.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS.

12944


