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Abstract

We study the robustness of ridge regression, lasso regres-
sion, and of a neural network, when the training set has
been randomly corrupted and in response to this corruption
the training-size is reduced in order to remove the corrupted
data. While the neural network appears to be the most robust
method among these three, nevertheless lasso regression ap-
pears to be the method of choice since it suffers less loss both
when the full information is available to the learner, as well
as when a significant amount of the original training set has
been rendered useless because of random data corruption.

Introduction
Machine learning applications are prevalent in our daily
lives. However, the data that is used for training a machine
learning model may be corrupted or misleading due to ad-
versarial situations that arise naturally (e.g., hard drive fail-
ures, transmission over unreliable mediums, etc), or mali-
ciously (e.g., by attackers). Hence, studying the effects of
adversarial situations that arise during the training phase of
a learnt model, is an important research direction.

Training-time attacks can be divided into two categories:
(i) noisy settings – see, e.g., (Valiant 1985) – where the train-
ing data are modified by noise, or (ii) poisoning attacks –
see, e.g., (Barreno et al. 2006; Biggio, Nelson, and Laskov
2012) – where malicious adversaries may tamper with the
training data and inject misleading information. Either way,
the problem is that the machine learning model that is learnt
may have larger risk and hence a fundamental issue is how
robust can a model be in adversarial settings.

Framing our Work. We are interested in investigating the
following question:

How much random data corruption can we sustain
into our training sets while still producing machine
learning models with acceptable error rate?

This question can be asked both for the average case, as
well as in a worst-case sense, along the lines of certified ro-
bustness (Steinhardt, Koh, and Liang 2017; Wong and Kolter
2018). More specifically, our machine learning models will
be predicting wind intensity which is important in several
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facets of our daily lives; e.g., evacuating areas when tor-
nadoes are about to emerge. We note that the vast major-
ity of work in adversarial machine learning is concentrated
to classification problems; regression problems are much
less explored. Furthermore, we explore situations where the
learner can tell if certain training examples are corrupted
(e.g., through a checksum) and therefore chooses to ignore
these examples by discarding them from the training set.
This situation is similar to certain indiscriminate clean-label
poisoning attacks (Mahloujifar, Diochnos, and Mahmoody
2020); in particular, when the adversary repeats legitimate
examples, thus reducing the sample size of the learner.

Preliminaries
We use X to denote the set of instances and Y the set of
possible labels. As we are predicting wind speed, the set
Y is either R corresponding to real-valued predictions (in
m/sec), or it is the set {0, 1, . . . , 12} corresponding to the
different values of the Beaufort scale. We use c to denote the
ground truth function c:X 7→ Y that assigns wind intensity
to an instance x. We use H to denote the hypothesis class
which contains all possible hypotheses (or models) that we
can form. We denote with h:X 7→ Y a specific hypothe-
sis that we select from H. A loss function ℓ is defined as
ℓ:Y ×Y 7→ R. That is, for a true label y1 = c(x1), a predic-
tion y′1 = h(x1) suffers loss ℓ (y′1, y1) = ℓ (h(x1), c(x1)).
Given an underlying distribution D on X , the (true) risk of
a hypothesis h is RD (h, c) = Ex∼D [ℓ (h(x), c(x))]. Given
a sample S = (x1, . . . , xm), the empirical risk of a hypoth-
esis h is R̂S (h, c) = 1

m

∑m
i=1 ℓ (h(xi), c(xi)). The idea is

that when one selects the hypothesis that minimizes the em-
pirical risk (w.r.t. a sufficiently large training set), then that
hypothesis is close to the best solution that one could find in
the entire H as far as the true risk is concerned.

Dataset. We are using a dataset with information for 16
cities (McGovern et al. 2021). Roughly, each city has 3,140-
3,200 instances; each instance has 2,723 or 3,567 attributes.
We perform an 80-20 split of the original dataset, so that
80% of the examples of a particular city is used for train-
ing, while the most recent chronologically 20% is used for
testing the model that we learn so that we can estimate its
predictive accuracy. With this idea in mind we created his-
tograms for the training sets and test sets for all 16 cities
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and we decided to investigate the situation in 3 cities (kcys,
kroa, and kdfw) where the distributions (in Beaufort scale)
were skewed towards smaller or larger values, or there was a
large discrepancy around the mode of the two distributions.
The full version of the paper has all the details.

Methods and Experiments
Typical machine learning investigations aim at achieving
low risk. However, here we care primarily on understanding
better the rate by which our model improves as it has access
to successively more and more data points (corresponding to
a situation where, e.g., we have fewer and fewer hard drive
failures). We tested ridge regression, lasso regression, and a
multi-layer neural network. Linear models such as ridge and
lasso regression are widely used in atmospheric sciences be-
cause they are more interpretable. We included a neural net-
work as an additional comparison.

Error Calculation and Smoothing. We are using the
squared loss function. Hence, in the test set (that has size t)
the empirical risk is given by the mean squared error (MSE):
1
t

∑t
i=1(h(xi)−yi)

2. We also record the root mean squared
error (RMSE). We ran every experiment s = 10 times so
that we can smooth the results and understand in a better
way the behavior of the learning process. Therefore, for ex-
ample, when using RMSE for computing the error, we used

the formula: 1
s

∑s
j=1

(√
1
t

∑t
i=1(hj(xi)− yi)2

)
.

Random Data Corruption. By fixing a random permu-
tation on the training examples at the beginning of each
smoothing iteration we satisfy two purposes: (a) we are
smoothing the results of the learning process, as we en-
counter the training examples in a random order, and (b) we
are able to simulate random data corruption on our train-
ing set, where the (randomly selected) corrupted data are the
training examples that belong to the batches that we have not
used during a particular part of the learning process.

Experiments. Figure 1 presents the RMSE of the learnt
model, as the learning process had access to successively
more partitions of the training set for the city kcys. We can
see that when the dataset for this city suffers random data
corruption of about 1/3 of the entire set and is thus discarded
by the learner, then the RMSE may increase by at most 6% in
the worst case. More information about all the tested cities
is available in the full version of the paper, including non-
smoothed worst-case guarantees.1 Finally, for small values
of random data corruption we may even observe improve-
ments in our predictions (Min, Chen, and Karbasi 2020).

Conclusions
We studied the robustness of ridge regression, lasso regres-
sion and of a neural network under random data corruption.
Lasso is the method of choice, even if the neural network
is affected less by a reduced training-set size. One can per-
haps also draw a parallel between this conclusion and the

1Source code: https://github.com/brom94/AAAI2022

Figure 1: The smoothed (over s = 10 iterations) RMSE of
the three models that we tested for the city kcys.

observation that, for linear models, robustness to adversar-
ial examples (test-time attacks for classification models) can
be achieved via an L1-norm penalty on the weights within
the loss function; (Goodfellow, Shlens, and Szegedy 2015;
Wong and Kolter 2018).
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