
HuggingMolecules: An Open-Source Library for Transformer-Based Molecular
Property Prediction (Student Abstract)

Piotr Gaiński,1,2 Łukasz Maziarka,1,* Tomasz Danel,1,2 Stanisław Jastrzebski3

1Jagiellonian University
2Ardigen

3Molecule.one
piotr.gainski@student.uj.edu.pl

Abstract

Large-scale transformer-based methods are gaining popular-
ity as a tool for predicting the properties of chemical com-
pounds, which is of central importance to the drug discovery
process. To accelerate their development and dissemination
among the community, we are releasing HuggingMolecules
– an open-source library, with a simple and unified API, that
provides the implementation of several state-of-the-art trans-
formers for molecular property prediction. In addition, we
add a comparison of these methods on several regression and
classification datasets. HuggingMolecules package is avail-
able at: github.com/gmum/huggingmolecules.

Introduction
Predicting molecule properties is a predominant task in the
drug discovery pipeline. A good predictive model is, there-
fore, a key tool in this process as it can accelerate the whole
pipeline as well as prevent costly mistakes in clinical trials.
Large pre-trained models based on the transformer architec-
ture are gaining popularity in the molecular property pre-
diction tasks and often become the state-of-the-art methods
in this field. We believe that in order to accelerate the de-
velopment of transformer-based methods in chemistry and
to spread their use among practitioners, it is necessary to
create one package in which it will be possible to use dif-
ferent models in a simple, consistent way, as in the case of
huggingface-transformers in NLP.

In this paper, we propose HuggingMolecules – an open-
source python library for simple, consistent usage of dif-
ferent transformer-based methods for molecular property
prediction tasks. We also make a strict comparison of
transformer-based methods implemented in our library on
many molecular property prediction datasets

Available Models
HuggingMolecules includes implementation of 4
transformer-based methods, together with their pre-
trained weights: MAT (Maziarka et al. 2020), Chem-
BERTa (Chithrananda, Grand, and Ramsundar 2020),
GROVER (Rong et al. 2020), MolBert (Fabian et al. 2020).

*Work done in Ardigen.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Library Architecture
HuggingMolecules consists of two main modules: src/ and
experiments/ modules. The src/ module contains abstract in-
terfaces for pre-trained models along with their implemen-
tations based on the PyTorch library. This module makes
configuring, downloading, and running existing models easy
and out-of-the-box. The experiments/ module makes use
of abstract interfaces defined in the src/ module and im-
plements scripts based on the PyTorch Lightning package
for running various experiments. This module makes train-
ing, benchmarking, and hyper-tuning of models flawless
and easily extensible. The neat and abstract design of Hug-
gingMolecules allows to implement and benchmark of new
model architectures in a consistent way.

The Src/ Module
Every model implemented in the src/ module has three ded-
icated classes located in the configuration, featurization and
models sub-modules of the src/ module. The configura-
tion class from the configuration module stores informa-
tion about hyper-parameters of the model. The featurizer
class from the featurization module is used to transform a
SMILES string into representation (a set of features) that
can be fed to the model. Finally, the model class from the
models module contains the implementation of the model it-
self. The interplay between these three classes is shown on
the following code snippet based on the MAT model:

config = MatConfig()
featurizer = MatFeaturizer(config)
model = MatModel(config)

batch = featurizer(["CCO", "CO"])
output = model(batch)

Moreover, HuggingMolecules provides easy access to the
pre-trained weights of the implemented models. It exposes
a simple user interface and takes care of downloading and
caching the appropriate data. The following code snippet
shows how to initialize the MAT model with weights pre-
trained on 20M molecules:

model = MatModel.\
from_pretrained("mat_masking_20M")

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12949



The Experiments/ Module
The core part of the experiments/ module are three python
scripts named train, tune hyper, and benchmark. The train
script can be used for convenient training of a model with the
PyTorch Lightning package. The tune hyper script performs
automated search for optimal training hyper-parameters
with the Optuna package that implements state-of-the-art
searching heuristics. The benchmark script benchmarks a
model with a standardized benchmark procedure described
in the next section. The scripts are integrated with the ab-
stract interfaces from src/ module, so any new model imple-
mented by an user in the src/ module can be used with the
scrips after adding a single configuration file.

The experiments/ module incorporates Therapeutics Data
Commons (TDC) framework (Huang et al. 2021) to sys-
tematically access the entire range of datasets used both in
chemistry and the drug discovery process. The experiments/
module goes with configuration files for 8 datasets from
TDC. The dataset base can be easily extended with any other
dataset (even that unavailable in TDC) by adding an appro-
priate configuration file.

Configuration files with meta-data required to run a script
are organized in a hierarchy and injected into the script by
the Gin Config package. It makes extending the experiments/
module intuitive and easy and allows to configure powerful
scripts with just a few flags in the command line. The follow-
ing bash snippet shows how to benchmark the MAT model
pre-trained on 20M molecules on the FreeSolv dataset:

python -m scripts.benchmark /
-m mat -d freesolv /
--model.pretrained_name mat_masking_20M

Benchmark
We benchmark all models implemented in Hugging-
Molecules on 9 different datasets (FreeSolv, Caco-2 , Clear-
ance, QM7, HIA, Bioavailability, PPBR, BBBP, Tox21-NR-
AR) using the benchmark script from the experiments/ mod-
ule. The benchmark procedure is: on the given dataset we
train the given model on 10 learning rates and 6 data splits
(60 trainings in total). Then we choose the learning rate that
optimizes an averaged (on 6 data splits) validation metric
(metric computed on the validation dataset, e.g. RMSE or
ROC AUC). The final result of the benchmark is the average
value of the metric computed on the test set for the chosen
learning rate.

We tested 3 versions of MAT: pre-trained on 200k, 2M,
and 20M of molecules; and 2 versions of GROVER: base
version and large version. Additionally, we tested 3 different
versions of D-MPNN (Yang et al. 2019): a vanilla version
(referred as D-MPNN), a version with rdkit 2d normalized
features generator (D-MPNN 2d) and a version with mor-
gan count features generator (D-MPNN mc).

Rank plots of obtained results are presented in Figure 1.
From the obtained results we can see that graph-based trans-
formers (MAT and GROVER) surpass textual transformers
that operate directly on SMILES (ChemBERTa, MolBERT)
and the non-transformer state-of-the-art D-MPNN model.

Figure 1: Rank plot of benchmarked models.

Acknowledgments
This research was funded by the Priority Research Area
Digiworld under the program Excellence Initiative –
Research University at the Jagiellonian University in
Kraków. The work of P. Gaiński was supported by the
POB DigiWorld and the work of Ł. Maziarka was sup-
ported by the National Science Centre (Poland) grant no.
2019/35/N/ST6/02125. We would like to thank NVIDIA for
supporting us with the computational resources required to
complete this work.

References
Chithrananda, S.; Grand, G.; and Ramsundar, B. 2020.
ChemBERTa: Large-Scale Self-Supervised Pretrain-
ing for Molecular Property Prediction. arXiv preprint
arXiv:2010.09885.
Fabian, B.; Edlich, T.; Gaspar, H.; Segler, M.; Meyers, J.;
Fiscato, M.; and Ahmed, M. 2020. Molecular representation
learning with language models and domain-relevant auxil-
iary tasks. arXiv preprint arXiv:2011.13230.
Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.;
Leskovec, J.; Coley, C. W.; Xiao, C.; Sun, J.; and Zitnik,
M. 2021. Therapeutics Data Commons: Machine Learning
Datasets and Tasks for Therapeutics. arXiv:2102.09548.
Maziarka, Ł.; Danel, T.; Mucha, S.; Rataj, K.; Tabor, J.; and
Jastrzebski, S. 2020. Molecule attention transformer. arXiv
preprint arXiv:2002.08264.
Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.;
and Huang, J. 2020. Self-Supervised Graph Transformer on
Large-Scale Molecular Data. Advances in Neural Informa-
tion Processing Systems, 33.
Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao,
H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.;
et al. 2019. Analyzing learned molecular representations for
property prediction. Journal of chemical information and
modeling, 59(8): 3370–3388.

12950


