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Abstract
Relational Graph Convolutional Networks (RGCNs) are
commonly used on Knowledge Graphs (KGs) to perform
black box link prediction. Several algorithms have been pro-
posed to explain their predictions. Evaluating performance of
explanation methods for link prediction is difficult without
ground truth explanations. Furthermore, there can be multi-
ple explanations for a given prediction in a KG. No dataset
exists where observations have multiple ground truth expla-
nations to compare against. Additionally, no standard scoring
metrics exist to compare predicted explanations against mul-
tiple ground truth explanations. We propose and evaluate a
method, including a dataset, to benchmark explanation meth-
ods on the task of explainable link prediction using RGCNs.

Explainable GCN Link Prediction
Knowledge Graphs represent facts as triples where a sub-
ject and object representing real world entities are linked by
some predicate. Link prediction methods discover new facts
from existing ones. One method is to use graph embeddings,
where a function is learned to map each subject, object, and
predicate to a low dimensional space. A Relational Graph
Convolutional Network (RGCN) (Schlichtkrull et al. 2018)
leverages Graph Convolutional Networks (Kipf and Welling
2017) with a scoring function such as DistMult (Yang et al.
2015) as an output layer, returning a probability of the input
triple being a fact.

Recent research has been devoted to develop methods to
explain the predictions of Graph Neural Networks on link
prediction. GNNExplainer (Ying et al. 2019) explains the
predictions of any Graph Neural Network, learning a mask
over the adjacency matrix to identify the most informative
subgraph. ExplaiNE (Kang, Lijffijt, and Bie 2019) quanti-
fies how the predicted probability of a link changes when
weakening or removing a link with a neighboring node.

The weakness of these papers is their evaluation of ex-
planation quality due to the lack of available datasets with
ground truth explanations. In this work, we propose a
method, including a dataset (FrenchRoyalty-200k), to quan-
titatively evaluate non-unique explanations. We adapt sev-
eral scoring metrics for use on this dataset, and perform a
benchmark comparing state-of-the-art explanation methods.
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User-Scored Non-Unique Explanations

In a Knowledge Graph, the available formal semantics al-
low us to view ground truth explanations as equivalent
to computing justification for an entailment. We select an
open-source semantic reasoner with rule-tracing capabili-
ties (Corby et al. 2012) to generate ground truth explana-
tions for each defined rule. The explanation associated with
a triple consists of all possible triples that triggered each
rule. This tracing pinpoints the input triples that caused the
generation of a triple we will then try to predict and explain.
All resources used and produced in this work are available
online.1

From DBpedia, we built a Knowledge Graph of the
French Royalty focusing on 6 family relationships: has-
Spouse, with 3 possible explanations, hasBrother, with 7
possible explanations, hasSister, with 7 possible explana-
tions, hasGrandparent, with 6 possible explanations, and
hasChild, and hasParent with 9 possible explanations. We
distinguish between two types of rules, logical derivation
and partial explanation. We define a logical derivation rule
as one that is always true, and a partial explanation rule as
one that is not always true without additional information,
such as gender. The logical derivation rules trigger every
time their antecedent is matched, and its corresponding triple
and logically true explanation are generated. The partial ex-
planation rules trigger only if the triple is already known
(asserted or inferred by other rules) and are just adding al-
ternative partial explanations, therefore preventing any false
triples from being included in the graph.

We conducted a survey to score each possible explanation
rule, allowing us to distinguish explanations that are intuitive
from those that are not without relying on any prior assump-
tions. In total, 42 users responded from 11 different national-
ities, consisting of both computer science and non-computer
science backgrounds. We normalized the average scores be-
tween 0 and 1 for each possible explanation, and round them
to the nearest tenth. These user scores are used in the rules
and in the benchmark, to penalize unintuitive predicted ex-
planations, and reward intuitive predicted explanations.

1https://github.com/halliwelln/multiple-explanations/
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Predicate
Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

RGCN Accuracy 0.786 0.878 0.826 0.822 0.804 0.8 0.81

GNN
Explainer

Generalized Precision 0.071 0.174 0.117 0.129 0.109 0.091 0.11
Generalized Recall 0.106 0.192 0.142 0.129 0.125 0.102 0.121

Generalized F1 0.083 0.18 0.126 0.129 0.114 0.095 0.114
Max-Jaccard 0.066 0.2 0.151 0.102 0.125 0.12 0.11

ExplaiNE

Generalized Precision 0.138 0.25 0.194 0.177 0.166 0.182 0.173
Generalized Recall 0.221 0.263 0.214 0.177 0.207 0.222 0.2

Generalized F1 0.165 0.253 0.2 0.177 0.18 0.195 0.182
Max-Jaccard 0.133 0.27 0.237 0.145 0.187 0.225 0.174

Table 1: Benchmark results on FrenchRoyalty-200k: Link prediction results for RGCN, and explanation evaluation for GN-
NExplainer and ExplaiNE on each subset of the full dataset. Highest scores per predicate denoted in bold.

Evaluating RGCN Explanation Quality
The binary precision and recall could be used to measure
performance for this task, however, these metrics fail to ac-
count for the fact that some explanations can be more intu-
itive than others to users. Both metrics would give a score of
1 when a predicted explanation exactly matches a ground
truth explanation. However, an explanation method could
predict an unintuitive explanation, and receive the highest
possible evaluation score, potentially misleading practition-
ers into thinking the predicted explanation is of high quality.
Therefore, scoring metrics used for this task must compare
a predicted explanation to all possible explanations, and ac-
count for the fact that explanations have different degrees of
relevance.

We adapted the generalized precision and generalized re-
call (Kekäläinen and Järvelin 2002) to the context of link
prediction on Knowledge Graphs, using the user scores as
relevance weights for each explanation. Furthermore, we
proposed the use of the max-Jaccard across all possible ex-
planations for a given triple. The max-Jaccard score mea-
sures if the explanation method is able to accurately predict
one of the possible explanations to choose from. The gen-
eralized precision and generalized recall measure if the pre-
dicted explanation was given a high intuitive score assigned
by users. Both metrics prevent an explanation method from
only predicting low scored, unintuitive explanations, and re-
ceiving a high score. Lastly, the generalized F1 provides an
overview of performance on the generalized precision and
recall.

Table 1 breaks down the results on the FrenchRoyalty-
200k dataset. We filter the results on the full data for each
predicate and compare performance metrics to each predi-
cate subset. For example, the Spouse column of Table 1 re-
ports the benchmark performance of all input triples with the
hasSpouse predicate from an RGCN trained on the full data,
hence the RGCN is exposed to all possible predicates.

We find ExplaiNE outperforms GNNExplainer on all sub-
sets, across all metrics. Upon examining the errors, we find
that both explanation methods do not always attempt to pre-
dict explanations with the highest user scores. We find that
both explanation methods instead predict explanations with

the most common user scores.

Conclusion
We propose a method, including a dataset (FrenchRoyalty-
200k), to benchmark explanation methods when there are
multiple ground truths to consider. We adapt several scoring
metrics to account for differences in explanation simplic-
ity. We benchmark two state-of-the-art explanation methods,
ExplaiNE and GNNExplainer, using the proposed dataset
and scoring metrics.
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