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Abstract
Incorporating curvature information in stochastic methods
has been a challenging task. This paper proposes a momen-
tum accelerated BFGS quasi-Newton method in both its full
and limited memory forms, for solving stochastic large scale
non-convex optimization problems in neural networks (NN).

Introduction
A majority of recent applications employ large NN mod-
els trained using massive amounts of data, thereby imposing
high computational load and storage memory. Hence, there
is a great demand for large scale stochastic algorithms that
can train NNs based on a relatively small subset of the train-
ing data. Gradient based methods are popularly used in train-
ing NNs and can be broadly classified as first and second
order methods. Despite the high computational cost, second
order methods such as the BFGS quasi-Newton method have
shown to have faster convergence compared to first order
methods. Incorporating second order curvature information
in stochastic settings is a challenging task and has been an
active area of research. This paper proposes a stochastic (on-
line) momentum accelerated quasi-Newton method in both
its full and limited memory forms for solving large scale
non-convex optimization problems in neural networks.

Background
Simple first order stochastic gradient descent takes the form

wk+1 = wk − αk∇E(wk,Xk), (1)

where ∇E(wk,Xk) is the gradient of the error function
computed on a mini-batch X ⊆ Tr, and αk is the learning
rate, usually determined by a decay schedule. The oBFGS
method (Schraudolph et al. 2007) is one of the early scalable
and stable stochastic quasi-Newton methods and is given as

wk+1 = wk − αkH
BFGS
k ∇E(wk,Xk), (2)

where HBFGS
k is a symmetric positive definite matrix itera-

tively approximated by the following BFGS formula.

HBFGS
k+1 = (I− ρkpkq

T
k )H

BFGS
k (I− ρkqkp

T
k ) + ρkpkp

T
k ,

(3)
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ρk = 1/qT
k pk, pk = wk+1 −wk,

and qk = ∇E(wk+1,Xk)−∇E(wk,Xk). (4)
In the limited memory form, the search direction gk =
HBFGS

k ∇E(wk,Xk) is determined by the two loop recur-
sion (Nocedal and Wright 2006). Note that in (4), o(L)BFGS
computes the gradient twice using the same mini-batch sam-
ple to reduce sampling noise and ensure scalability.

Similar to the o(L)BFGS, the stochastic variant of NAQ
(Ninomiya 2017), namely, o(L)NAQ (Indrapriyadarsini
et al. 2019) was shown to accelerate o(L)BFGS. o(L)NAQ
also computes two gradients per iteration, one of which is
the Nesterov’s accelerated gradient ∇E(wk + µvk,Xk).
The momentum parameter is chosen as 0 < µ < 1. The
update equations for NAQ are as follows.

wk+1 = wk + µvk+1, (5)

vk+1 = µvk − αkH
NAQ
k ∇E(wk + µvk,Xk), (6)

where HNAQ
k is symmetric positive definite matrix given by

HNAQ
k+1 = (I− ρkp̂kq̂

T
k )H

NAQ
k (I− ρkq̂kp̂

T
k ) + ρkp̂kp̂

T
k ,
(7)

ρk = 1/q̂T
k p̂k, p̂k = wk+1 − (wk + µvk),

and q̂k = ∇E(wk+1,Xk)−∇E(wk + µvk,Xk). (8)
The limited memory oLNAQ is formulated by computing
the search direction gk = HNAQ

k ∇E(wk + µvk,Xk) using
the two-loop recursion.

Proposed Algorithm : o(L)MoQ
The Momentum Quasi-Newton (MoQ) method (Mahboubi
et al. 2019) showed that the Nesterov’s accelerated gradient
in NAQ can be approximated as a linear combination of past
gradients as shown below.

∇E(wk + µvk) ≈ (1 + µ)∇E(wk)− µ∇E(wk−1). (9)

Extending this approximation to o(L)NAQ, this paper pro-
poses a stochastic momentum accelerated quasi-Newton
(oMoQ) method. The algorithm is as shown in Algorithm
1. The Hessian HMoQ

k is updated by (10) where sk and yk

are computed as shown in steps 12 and 13 of Algorithm 1.

HMoQ
k+1 = (I−ρkskyT

k )H
MoQ
k (I−ρkyks

T
k )+ρksks

T
k . (10)
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Figure 1: LeNet-5 results on 28x28 MNIST with b = 128,m = 4

Note that unlike o(L)BFGS and o(L)NAQ, the proposed
method computes only one gradient per iteration, while the
gradient computed with respect to the previous batch Xk is
stored in memory. The computation cost is thus reduced by
bd, where b is the batch size and d is the number of param-
eters. Limited memory oLMoQ is formulated by computing
the search direction gk (step 5) using the two-loop recursion.

Simulation Results
The performance of oLMoQ is evaluated on 28x28 MNIST
dataset and LeNet-5 architecture with a batch size b = 128,
limited memory m = 4, µ = 0.85, d = 61, 706 for 10
epochs. Based on experimentation, a decay schedule of
αt+1 = 0.5αt is chosen for oLMoQ, where t is the epoch.
The αk schedules of oLBFGS and oLNAQ are chosen as
in (Schraudolph et al. 2007) and (Indrapriyadarsini et al.
2019), respectively. From the iteration versus test loss and
test accuracy graphs, we can observe that the momentum
methods oLNAQ and oLMoQ perform better than Adam and
oLBFGS, and oLMoQ performs better than oLNAQ. From
the time versus test loss and test accuracy graphs, we can
see that oLMoQ is faster compared to oLBFGS and oL-
NAQ, which is due to one gradient computation per itera-
tion. Though the per iteration time of Adam is still better
than oLMoQ, we can notice that Adam would take a few
more iterations to reach the same test loss or test accuracy

Algorithm 1: Stochastic MoQ

Require: learning rate schedule, 0 < µ < 1 and kmax

Ensure: wk ∈ Rd, Hk = εI and vk = 0
1: Calculate∇E(wk, Xk)
2: while ||∇E(wk)|| > ε and k < kmax do
3: Determine learning rate αk

4: ∇E1 = (1+ µ)∇E(wk,Xk)− µ∇E(wk−1,Xk−1)
5: gk ← −Hk∇E1

6: gk = gk/||gk||2
7: vk+1 ← µvk + αkgk

8: wk+1 ← wk + vk+1

9: Store∇E(wk,Xk)
10: Select mini-batch Xk+1

11: Calculate∇E2 = ∇E(wk+1,Xk+1)
12: sk ← wk+1 − (wk + µvk)
13: yk ← ∇E2 −∇E1 + λsk
14: Update Hk using (10)
15: end while

Algorithm Computational Cost Storage
oBFGS 2bd+ d2 d2

oLBFGS 2bd+ 6md 2md
oNAQ 2bd+ d2 d2

oLNAQ 2bd+ 6md 2md
oMoQ bd+ d2 d2 + d

oLMoQ bd+ 6md (2m+ 1)d

Table 1: Summary of Computional Cost.

value as that of oLMoQ. Finally, Table 1 shows the summary
of computation and storage costs.

Conclusion
This paper proposed a stochastic momentum accelerated
quasi-Newton method, and evaluated its performance in
comparison to oLBFGS and oLNAQ on the 28× 28 MNIST
classification problem. The proposed oLMoQ method com-
putes only one gradient per iteration and has shown to con-
verge faster compared to oLBFGS and oLMoQ. In full batch
setting, NAQ (Ninomiya 2017) and MoQ (Mahboubi et al.
2019) have shown to have convergence properties similar to
that of the BFGS method. As future works, the convergence
properties of these methods in the stochastic setting will be
studied along with the effectiveness on larger problems.
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