
Tracking Down Misguiding Terms for Locating Bugs in Deep Learning-Based
Software (Student Abstract)

Youngkyoung Kim,1 Misoo Kim, 2 Eunseok Lee 3

1 Department of Electrical and Computer Engineering, Sungkyunkwan University
2 Institute of Software Convergence, Sungkyunkwan University

3 College of Computing and Informatics, Sungkyunkwan University
agnes66@skku.edu, misoo12@skku.edu, leees@skku.edu

Abstract

Bugs in source files (SFs) may cause software malfunction,
inconveniencing users and even leading to catastrophic acci-
dents. Therefore, the bugs in SFs should be found and fixed
quickly. However, from hundreds of candidate SFs, finding
buggy SFs is tedious and time consuming. To lessen the
burden on developers, deep learning-based bug localization
(DLBL) tools can be utilized. Text terms in bug reports and
SFs play an important role. However, some terms provide
incorrect information and degrade bug localization perfor-
mance. Therefore, those terms are defined here as “misguid-
ing terms,” and an explainable-artificial-intelligence-based
identification method is proposed. The effectiveness of the
proposed method for DLBL was investigated. When misguid-
ing terms were removed, the mean average precision of the
bug localization model improved by 33% on average.

Introduction
Software is used in products in various fields such as med-
ical, aerospace, and transportation, and its role is getting
larger. Defects in software not only inconvenience users but
can also lead to serious, possibly deadly, consequences. For
large-scale software used in industry, numerous bugs are re-
ported as a bug report (BR), and there are many source files
(SFs) to be searched. As a result, considerabe time is spent
resolving bugs, and there may be delays when bugs that ur-
gently need to be fixed.

The deep learning-based bug localization (DLBL) tech-
nique automates the bug localization process, making it pos-
sible to identify the bug location quickly for bug resolution
(Xiao et al. 2019). The core of this technology is to take
the text token of the BR and the text token of the SF as in-
put and calculate the relevance score of SF to BR, which
is used to rank SFs. Since word vectors are representative
data applied to this technique, it is necessary to remove un-
necessary words for search in advance. The problem is that,
among text tokens that have undergone preprocessing such
as stop word removal, there are misguiding terms (MGTs)
that have a great influence on the DLBL model by convey-
ing the incorrect meaning.

Some experienced developers can establish rules for se-
lecting MGTs based on empirical knowledge. However,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

since this method is individual-dependent, bias may occur,
and unidentified terms may exist. Therefore, we propose au-
tomatically identifying MGTs for DLBL.

Motivation
In preprocessing, stop-words that have little or no mean-
ing, such as articles, are removed to improve computational
efficiency and localization performance. However, in addi-
tion to these words, others convey incorrect information and
worsen the DLBL performance.

First, the domain-specific meaning of the term can not be
fully embedded in the vector representation of the term used
for DLBL. For example, one can consider the terms used
in the experimental dataset in this study, such as the term
“eye”, where the “eye” function is used to create a sparse
matrix. The similarity between “eye” and “sparse” is only
0.13, while the similarity with “dense” is even higher, at
0.23. This situation means that, when there is an “eye” in
the BR, the SFs having “dense” are found as buggy files,
even though the buggy file contains “sparse”. If such incor-
rect embedded words significantly impact the DLBL model,
the bug localization model makes incorrect predictions.

Second, words unrelated to defects are frequently
overused. For example, the data utility of PyTorch
(torch.utils.data) is a package that is frequently used to call
various modules, such as Dataset and DataLoader. In data-
driven software, the word “data” can appear in any process,
and it does not provide adequate information in all situa-
tions. In the case of deep learning-based software, which
is popular data-driven software, if a DataLoader appears in
the attached example code of a BR, which explains an error
in the training process, it will lead to an incorrect localiza-
tion result because the model concentrates on the word “Dat-
aLoader”. Similarly, the word “load” can be used in various
situations when loading a model, loading data, or loading a
container. Eliminating such MGTs that are likely to provide
irrelevant information enables the bug localization model to
focus on more relevant information

Proposed Method
To find project-specific MGTs, historical textual data of a
software project, DLBL model, and explainable-AI (XAI)
are used to extract MGTs. The aim is to remove the terms

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12983



that rank the fake buggy SF (FBSF) higher than the real
buggy SF (RBSF) while preserving the terms that can make
the RBSF rank higher than the FBSF.

Dataset and DLBL Model Acquisition. First, past BR
and SF pairs are collected. When the SF is fixed for
the BR, then this pair is labeled Positive. Otherwise, the
pair is labeled Negative. Pair data are split into a DLBL-
acquisition dataset (training dataset) and an impacting-
word-identification dataset (validation dataset). The DLBL
model is trained with the DLBL-acquisition dataset. Impact-
ing words are identified with the trained DLBL model and
impacting-word-identification dataset.

Real and Fake Buggy SF Identification. Based on the
prediction of the trained DLBL model, FBSFs and RBSFs
are identified. The RBSFs are a set of SFs that were actually
modified to fix bugs and predicted as a buggy file. FBSFs
are SFs that are not modified to fix bugs but are predicted
as buggy files with a high score and ranked higher than real
buggy files.

Impacting Word Recognition. With two document sets
(FBSFs and RBSFs), first, identify the impacting words that
caused the DLBL model to decide the label as Positive
(buggy). Explainable techniques, such as LIME (Ribeiro,
Singh, and Guestrin 2016), can explain the prediction of the
classifier. LIME observes the impact of the word in a docu-
ment by masking the words based on the normal distribution
of the data, keeping the data from getting too far from the
original data. Therefore, LIME is utilized to identify the im-
pacting words. From each file, the impacting words and their
scores are collected. Next, an average score of each word is
calculated. A single word has two representative scores for
FBSFs and RBSFs. If the word appears only in RBSFs, it re-
mains a true positive impacting word. Words appearing only
in the FBSF are false-positive words and are classified as
MGTs. If words appear in both the BRSF and RBSF, those
with higher average impacting scores in the FBSF than in
the RBSF are classified as MGTs. The terms with higher av-
erage scores in the RBSF are not chosen because this may
lower the rank of RBSF more than that of the FBSF.

MGT Removal. For a new BR, the previously obtained
DLBL model can be reused without any new training. The
DLBL model calculates the relevancy of the BR and each
SF with the MGT removed. Real bug files are ranked higher
because terms that cause the DLBL model to predict fake
bug files as buggy files are excluded from the input, enabling
the model to make better predictions.

Preliminary Experiment
Setting. An experiment was conducted on two relatively
large open-source projects, MXNet and PyTorch-Lightning,
from a recent bug benchmark (Kim, Kim, and Eunseok
2021). The effectiveness of the proposed method was
demonstrated by comparing the performance of the basic
DLBL model with and without MGTs. For a basic DLBL
model, a simple convolutional neural network based text
classification model proposed by Kim (Zhang and Wallace
2015) was used, which is not only effective for general nat-
ural language analysis but also the basis of various DLBL
models (Xiao et al. 2019). The performance of the DLBL

Project #MGT Best
#MGT Type MRR MAP

MXNet 180 160 w/ MGT 0.25 0.20
w/o MGT 0.32 0.25

PyTorch-
Lightning 294 60 w MGT 0.41 0.25

w/o MGT 0.54 0.36

Table 1: Preliminary Results

model was evaluated with widely used metrics for bug lo-
calization, mean reciprocal rank (MRR), and mean average
precision (MAP). MRR and MAP represent the effort of the
developer to locate the first buggy SF and all buggy SFs,
respectively.

Results. Since too much information can be discarded if
too many words are removed, the number of MGTs (#MGT)
was adjusted in increments of 10 to get the best #MGT.
The numbers of collected MGTs for MXNet and PyTorch-
Lightning was 180 and 294. Terms such as “data” and “load”
were identified as MGTs as described in the Motivation sec-
tion. Table 1 shows the performance of bug localization with
the best #MGT of each project. When MGTs were removed,
the DLBL model could locate buggy SFs more accurately
for both projects. For MXNet, MRR and MAP improved
by 25.5% and 25.3% respectively. For PyTorch-Lightning,
MRR and MAP improved by 31.4% and 40.8%, respec-
tively. The proposed method was effective for improving the
ranking of the most suspicious buggy SF and improving the
overall ranking of the buggy SF. The result of the prelimi-
nary experiment implies the existence of MGTs, suggesting
that MGT removal can significantly improve the DLBL per-
formance. In the future, it is planned to advance the tech-
nique for the selection of the best #MGT.

Acknowledgements
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT)(2019R1A2C2006411, 2021R1A6A3A01086997)

References
Kim, M.; Kim, Y.; and Eunseok, L. 2021. Denchmark: A
Bug Benchmark of Deep Learning-related Software. In Pro-
ceedings of the 18th International Conference on Mining
Software Repositories, 540–544.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ” Why
should i trust you?” Explaining the predictions of any clas-
sifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
1135–1144.
Xiao, Y.; Keung, J.; Bennin, K. E.; and Mi, Q. 2019. Improv-
ing bug localization with word embedding and enhanced
convolutional neural networks. Information and Software
Technology, 105: 17–29.
Zhang, Y.; and Wallace, B. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional neu-
ral networks for sentence classification. arXiv preprint
arXiv:1510.03820.

12984


