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Abstract

We propose a new discrete model for simultaneously spread-
ing two opinions within a social network inspired by the fa-
mous TARGET SET SELECTION problem. We are given a so-
cial network, a seed-set of agents for each opinion, and two
thresholds per agent. The first threshold represents the will-
ingness of an agent to adopt an opinion if she has no opinion
at all, while the second threshold states the readiness to ac-
quire a second opinion arriving. The goal is to add as few
agents as possible to the initial seed-sets such that, once the
process started with these seed-set stabilises, each agent has
either both opinions or none.
We perform an initial study of its computational complex-
ity. It is not surprising that the problem is NP-hard even in
quite restricted settings. Therefore, we investigate the com-
plexity of the problem from the parametrized point-of-view
with special focus on sparse networks, which appears often
in practice. Among other things, we show that the proposed
problem is in FPT if we parametrize by the vertex cover num-
ber of the underlying graph.

Introduction
To study the influence of direct marketing in social net-
works, Domingos and Richardson (2001) introduced the
TARGET SET SELECTION problem (TSS for short). We fol-
low the threshold model proposed by Kempe, Kleinberg, and
Tardos (2003). In the original TSS problem, we are given a
social network G, which is an undirected graph, a threshold
function f : V (G) → N, and a budget b. Our goal is to de-
cide whether there is a subset T ⊆ V (G) such that if the
following activation process

P 0 = T, P i+1 = P i ∪ {v | f(v) ≤ |N(v) ∩ Pi|},
where N(v) is the set of neighbours of v, stabilizes in `-th
round, i.e, P ` = P `+1, then P ` = V (G).

We propose a novel model called 2-OPINION TARGET
SET SELECTION where we extend the input of the problem
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by a second threshold function for every agent v ∈ V (G),
we introduce an initial seed-sets Sa and Sb for both opin-
ions, and we change the activation process as follows.

P 0
a = Sa ∪ Ta, P 0

b = Sb ∪ Tb,

P i+1
c = {v ∈ V (G) \ (P i

a ∪ P i
b ) | f1(v) ≤ |P i

c ∩N(v)|}
∪ {v ∈ P i

¬c | f2(v) ≤ |P i
c ∩N(v)|} ∪ P i

c ,

where c ∈ {a, b} and ¬c ∈ ({a, b} \ c). In this setting, our
goal is not to spread both opinions in the whole network, but
to influence the process by selecting an appropriate Ta, Tb ⊆
V (G), with |Ta| + |TB | ≤ b, such that when the process
stabilizes, every agent v ∈ V (G) has either both opinions or
none.

The TSS problem with two opinions was already studied
by Garimella et al. (2017). In contrast to their model, we
have no opinion-specific threshold, but we allow a certain
level of interaction between the opinions. We believe that
this is an interesting setting as it captures different agent’s
mindsets. For example, we are able to model the case where
an agent v is tougher towards the second opinion (by setting,
e.g., f2(v) = 5f1(v)), which can find an application in, e.g.,
modeling the following of political leaders. On the other
hand, agents can infer the second opinion easily in many
applications, e.g., when the first virus decreases the ability
of an agent to resist a second virus. One might also ask why
to balance the spread of two opinions already presented in a
social network. Suppose that there are two experts having a
strong opinion, for example, on COVID-19 vaccination. As
a social network manager, we do not have enough expertise
to recognise the truthful opinion. And if many agents receive
only the opinion which later turns out to be deceptive, then
these agents might feel deceived by the network. Thus, we
can help both opinions to spread evenly.

Hardness Results
Our first result shows that the studied model is NP-hard and
thus there is a need to study the problem from different per-
spectives to hope for tractable cases.

Theorem 1. It is NP-hard to solve the 2-OPINION TAR-
GET SET SELECTION problem.
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To prove the theorem, we reduce from the original
TSS. It is easy to verify that if we are given an in-
stance I = (G, f, b) of the TSS problem, then instance
Ĩ = (G, ∅, V (G), f1, f, b), where ∀v ∈ V (G) : f1(v) =∞,
is equivalent. The task is then reduced to select a minimal
target set Ta ⊆ V (G) such that the process spreads the opin-
ion a to the whole network. Consequently, unless P 6= NP,
there is no hope for a polynomial-time algorithm for the gen-
eral 2OTSS. Thus, it is reasonable to study the problem un-
der a different lens.

Parametrized Complexity
The traditional computational complexity is focused on the
classification of computational problems into complexity
classes based on the size of the input. For NP-hard problems,
it means that they are considered intractable under reason-
able theoretical assumptions. The parametrized complexity
perspective (Cygan et al. 2015) is focused on the study of a
problem’s complexity with respect to not only the instance
size, but it takes into account also an additional information
about the input instance – a parameter.

Formally, for a fixed finite alphabet Σ, we define a
parametrized problem as a language L ⊆ Σ∗ × N. An in-
stance is a pair (x, k), where x is the problem’s input and
k ∈ N is the value of a parameter. An instance is called a
yes-instance if and only if (x, k) ∈ L.

Similarly to the classical complexity, we define complex-
ity classes to distinguish “easy” and “hard” problems. The
most favourable complexity class is FPT, which contains all
problems solvable in f(k) · nO(1) time, where f is a com-
putable function. In addition, the class W[1] contains both
problems in FPT and problems believed not to be in FPT.
For a more comprehensive introduction to the parametrized
complexity, we refer the reader to Cygan et al. (2015).

Bounded Vertex Cover Networks
In this section, we show that the studied problem is in FPT
with respect to the vertex cover number of the underlying
graph. Let C be a minimum size vertex cover in G, i.e., a
set such that ∀{u, v} ∈ E(G) : u ∈ C ∨ v ∈ C, of size k.
Our algorithm is based on multiple reduction rules, which
are applied exhaustively in the order of occurrence.

First, if there is a vertex v ∈ V (G) such that v ∈ Sa ∩ Sb,
then we remove v from the network and continue with the
instance, where for each neighbour u of v we decrease the
threshold values by one.

Next, let v ∈ V (G) be a vertex such that either v ∈ Sa

or v ∈ Sb, and f2(v) > deg(v). Since it is not possible to
reach v with the second opinion, we add v to the seed-set for
both opinions and decrease budget b by one.

Then, we observe that there is no difference whether a
threshold exceeds the degree of a vertex by one or by a mil-
lion – in both cases the natural process is not capable to
affect this vertex. Thus, for each vertex v ∈ V (G) we set
fi(v) = min{fi(v), deg(v) + 1}.

The final rule directly recognises big yes- and no-
instances. It is easy to see that if b < 0, then we are strug-
gling with no-instance. On the other hand, if b ≥ |C \Sa|+

|C \ Sb|, then we output a trivial yes-instance. With the nec-
essary preparation, we obtain our final result.
Theorem 2. The 2-OPINION TARGET SET SELECTION is
in FPT when parametrized by the minimum size k of a vertex
cover C of the underlying graph.
Proof. Let (G,Sa, Sb, f1, f2, B) be an instance of 2OTSS.
We assume the input instance to be reduced with respect to
the presented reduction rules. If b ≥ 2k, then the final rule
applies. Hence, we assume b < 2k.

We define an equivalence relation ∼ on V \ C such that
for u, v ∈ V \C we have u ∼ v if and only if N(u) = N(v),
and for i = 1, 2 it holds that fi(u) = fi(v). The cardinality
of the quotient set (V \ C)/ ∼ is at most 2k · (k + 1)2

and together with the vertices of vertex cover C we have
k + 2k · (k + 1)2 different kinds of vertices from which we
have to select at most min{B, k} vertices into the seed set
Ta and at most min{B, k} into Tb. I.e., at most 2k vertices
with at most k+2k ·(k+1)2+1 ≤ 2k ·(k+2)2 options each
which gives us at most

(
2k(k + 2)2

)2k
= 22k

2+O(k log k)

options in total that can all be checked in 22k
2+O(k log k) ·n2

time. Thus, 2OTSS is in FPT when parametrized by the
vertex cover number.

Conclusions and Future Work
In addition to Theorem 2 presented here, we proved that the
2OTSS is W[1]-hard with respect to the most natural param-
eter – the sum of sizes of the seed-sets. The problem remains
W[1]-hard even if we combine the size of the seed-sets with
the tree-width of the underlying graph .

On the positive side, we showed that 2OTSS is in FPT
if we parametrize with the number of rounds, maximum
threshold, and the tree-width of the underlying graph. More-
over, the same algorithm also applies for the combined pa-
rameter tree-depth and maximum threshold. Last but not
least, we proved that the problem is in FPT for the parame-
ter 3-path vertex-cover. It is worth mentioning that our algo-
rithm based on N -fold integer programming applies also to
TSS and is the fastest currently known.

Identifying and studying important special cases of
2OTSS, such as the majority thresholds version, or other
structural limitations, especially those that are bounded in
sparse graphs, should be of interest for future research.
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