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Abstract
Existing studies on salient object detection (SOD) focus on
extracting distinct objects with edge features and aggregating
multi-level features to improve SOD performance. However,
both performance gain and computational efficiency cannot be
achieved, which has motivated us to study the inefficiencies in
existing encoder-decoder structures to avoid this trade-off. We
propose TRACER which excludes multi-decoder structures
and minimizes the learning parameters usage by employing
attention guided tracing modules (ATMs).

Introduction
The performance of salient object detection (SOD) has im-
proved by two approaches: improvement on the edge repre-
sentation and discrepancy reduction during multi-level ag-
gregation. These existing approaches improved SOD perfor-
mance; however, they are incapable of simultaneously achiev-
ing the performance and computational efficiency. Therefore,
to improve both performance and computational efficiency,
this study focuses on reducing inefficiencies, which can de-
velop in existing encoder-decoder structures, and applying
adaptive pixel-wise weights to conventional loss functions.

Based on the existing encoder-decoder structures, we ob-
served three inefficiencies. First, previous studies commonly
employ deeper encoder representations for generating edge
information; however, the representations require a large
memory and cannot leverage refined edges in the encoder
structure. Second, in multi-level aggregation, the existing
methods do not consider the relative significance in each level.
Finally, existing multi-decoder structures reduce multi-level
distribution discrepancy, although, these structures cannot
guarantee computational and memory efficiency.

In the process of applying adaptive pixel-wise weights to
the loss function, conventional binary cross entropy (BCE)
and IoU loss functions independently treat each pixel. How-
ever, the pixels adjacent to fine or explicit edges should be
focused more than the pixels in the background or center of
the salient object. Consequently, it is necessary to employ
adaptive pixel-wise weights to delineate fine or explicit edge
regions while excluding redundant areas.
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Figure 1: Overview of TRACER framework.

TRACER
Masked edge attention: The masked edge attention mod-
ule enhances the edge features in low-level representations
using a fast Fourier transform (FFT ) and propagates the
edge-refined representation to the second encoder block. Ex-
isting methods cannot leverage the explicit edges in the fea-
ture extraction phases because they require the outputs of
deeper encoders to obtain the distinct edges. Using FFT ,
we compute the edge-refined representation XE as follows:
XE = X +RFB(FFT−1(fHr (FFT (E1)))). Here, E1 de-
notes the first encoder block output and fHr (·) is a high-pass
filter, which eliminates all frequencies except those in ra-
dius r. Because FFT−1(fHr (FFT (E1))) contains the back-
ground noise when it is transformed from the frequency do-
main to the spatial domain, we eliminate noise using the
receptive field operationRFB(·) and generate explicit edge.
Union attention: A union attention module is designed
to aggregate multi-level features and detect the more im-
portant context from both channel and spatial represen-
tations. Each encoder output Ei∈{2,3,4} is aggregated to
X ∈ R(32+64+128)×H2×W2 . We discriminate the relatively
significant channel-wise context and emphasize the spatial
information based on complementary confidence scores ob-
tained from the channel context.

αc = σ(softmax(Fq(X̃)Fk(X̃)>)Fv(X̃)) (1)

In Eq. (1), X̃ ∈ RC×1×1 is the channel-wise pooled repre-
sentation, and F(·) denotes the convolution operation using
1×1 kernel size. Context information is obtained by using
the self-attention method and the softmax function to dis-
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Figure 2: Pixel intensity ω visualization corresponding to the
kernel size K.

criminate significant channels αc ∈ RC×1×1 with a sigmoid
function. To refine the aggregated representationX , we apply
confidence channel weight as follows: Xc = (X ⊗ αc) +X .
Subsequently, we retain confidence channels based on the
distribution of αc and the confidence ratio γ as follows:

X̃c = Xc ⊗mask
{
mask = 1, if αc > F−1(γ)

mask = 0, otherwise
(2)

Here, F−1(γ) denotes γ quantile of αc. We exclude an area
of γ in the lower tail of the distribution αc. Then, the refined
input X̃c is computed spatially to discriminate the salient
object and generate the first decoder representation D0 ∈
R1×H2×W2 , as shown in Eq. (3).

D0 = softmax(Gq(X̃c)Gk(X̃c)
>)Gv(X̃c) + Gv(X̃c) (3)

Here, G(·) projects the input features to X̃c ∈ R1×H2×W2

using convolutional operation with 1× 1 kernel size.
Object attention: To reduce the distribution discrepancy
between encoder and decoder features D ∈ R1×H×W using
minimal parameters, we organize an object attention module
as a decoder. To refine the salient object, the object weight αO

is calculated as follows: αO = σ(D). However, αO cannot
always detect the entire object with explicit edge regions;
thus, we generate a complementary edge weight αE to cover
the undetected regions. For each pixel in D, we reverse the
detected areas and eliminate background noise corresponding
to the denoising ratio d for missed region detection.
Adaptive pixel intensity loss: Pixels that are adjacent to fine
or explicit edges require more attention compared to pixels
in the background and center of the salient object. Thus, this
study proposes adaptive pixel intensity loss, which applies
the pixel intensity ω to each pixel as follows:

ωij = (1− λ)
∑
k∈K

∣∣∣∣∣∣∣
∑

h,w∈Aij

ykhw∑
h,w∈Aij

1
− yij

∣∣∣∣∣∣∣ yij (4)

Here, we aggregate adjacent pixels (h,w) around the target
pixel Aij by using multiple kernel size K and excluding
weights outside the edges. In Fig. 2, if the target pixel con-
sists of fine edges, multi-kernel aggregation is employed to
allocate more intensity to the target pixel than to other pixels.
λ is an overriding weight that penalizes when employing
multi-kernel aggregation because hierarchical aggregation
imposes more weights on the pixels at the explicit edges.

Experiments
Experimental setup: We performed the evaluation on public
benchmark datasets: DUTS and DUT-OMRON. We trained

Models #Params GFLOPs MPE DUTS-TE DUT-OMRON
MAE Sm FPS MAE Sm FPS

SCRN 25.25M 30.18 10.04m .040 .885 41.29 .056 .837 41.52
F3Net 25.54M 32.86 7.24m .035 .888 60.51 .053 .838 63.22
LDF 25.15M 31.02 7.05m .034 .892 64.41 .052 .839 67.00
TR-R 25.28M 25.94 3.73m .035 .890 145.48 .050 .845 154.38
TE2 11.09M 5.20 2.46m .030 .891 242.92 .047 .846 267.25

Table 1: Comparison of TRACER effectiveness for ResNet
based methods.

TRACER using the DUTS-TR dataset and used the DUT-
OMRON for testing, following existing studies (Wei, Wang,
and Huang 2020; Wei et al. 2020). To measure TRACER
performance, we used two evaluation metrics MAE and S-
measure. The S-measure, which calculates the object-aware
(So) and region-aware (Sr) structural similarities, was calcu-
lated as Sm = α× So + (1− α)× Sr, where α = 0.5.
Experimental results: We compared TRACER framework
with existing methods (Wu, Su, and Huang 2019; Wei, Wang,
and Huang 2020; Wei et al. 2020), which showed outstanding
performance. For a fair comparison, we measured minutes
per epoch (MPE) and frames per second (FPS) for model
training and inference times, respectively, under the same
conditions. We adopted ResNet50 (TR-R) and EfficientNet
b2 (TE2) as the backbone encoders. As listed in the Tab.1, the
TE2 performed 2.9× to 4.1× faster than the existing methods
on training each epoch and 3.8× to 6.4× faster on inference
times. Indeed, the existing multi-decoder frameworks occu-
pied 32.6% (SCRN), 38.2% (F3Net), and 34.6% (LDF) of
total GFLOPs at the multi-decoder structures, respectively.
In contrast, TR-R occupied 12.9%; thus, it shows TRACER
framework improves the existing multi-decoder inefficiency.

Conclusion
We study the inefficiencies in the existing encoder-decoder
structure, and we propose TRACER, which discriminates
salient objects by employing ATMs. TRACER detects the
objects and edges in both channel and spatial-wise repre-
sentations using minimal learning parameters. To treat the
relative importance of pixels, we propose an adaptive pixel
intensity loss function. TRACER improves the performance
and computational efficiency in comparison to the existing
methods on the DUTS and DUT-OMRON datasets.
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