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Abstract

The development of InSAR (satellite Interferometric Syn-
thetic Aperture Radar) enables accurate monitoring of land
surface deformations, and has led to advances of deforma-
tion forecast for preventing landslide, which is one of the se-
vere geological disasters. Despite the unparalleled success,
existing spatio-temporal models typically make predictions
on static adjacency relationships, simplifying the conditional
dependencies and neglecting the distributions of variables. To
overcome those limitations, we propose a Distribution Aware
Probabilistic Framework (DAPF), which learns manifold em-
beddings while maintaining the distribution of deformations.
We obtain a dynamic adjacency matrix upon which we ap-
proximate the true posterior while emphasizing the spatio-
temporal characteristics. Experimental results on real-world
dataset validate the superior performance of our method.

Introduction
Landslides are among the most common geological hazards,
and can result in significant economic losses and casualties.
They occur often because of heavy rain, rock erosion, or
other natural disasters in mountainous area (Huang and Fan
2013). Monitoring deformations of the land surface is criti-
cal for preventing landslides and has gained great attention
recently in both academia and industry (Zhou et al. 2021).

The prediction of land deformation is similar to most
spatio-temporal tasks, such as traffic flow and trajectory pre-
diction (Mohamed et al. 2020). It has been in the spotlight,
especially with the recent advances in Graph Neural Net-
works (GNNs). Although prior studies have made signifi-
cant improvements in modeling spatio-temporal data, exist-
ing models are still facing several challenges.

First, existing approaches lack a dynamic adjacency ma-
trix and only catch static spatial interactions. However, the
truth is that neighboring nodes may share similar tempo-
ral patterns, which can inform the trend of temporal fea-
tures. Modeling temporal similarities between nodes allows
obtaining a more informative adjacency matrix, thus better
measuring the similarity between nodes. Second, most exist-
ing methods simplify the conditional dependencies, which
inevitably cause information loss. Third, prior distributions
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Figure 1: Comparison of graphical models.

of variables, i.e., node embeddings, are also ignored, re-
sulting in an over-smoothing problem of GNNs (Zhao and
Akoglu 2020). In a word, these methods are not fully ex-
ploited due to inadequate probabilistic modeling.

Methodology
Definitions: Denote N monitored locations as V ∈ RN×d,
each with d = 3 coordinates (longitude, latitude, eleva-
tion). We consider the observed deformations as S ∈ RN×T ,
where T is the duration of the observation. In GNN-based
models, we have adjacency matrix A and the aggregated
spatio-temporal features W ∈ RN×M . Our task is to fore-
cast deformations Y ∈ RN×T ′

in future time periods T ′,
defined as:

p(Y,W,A|V,S) = p(A|V,S)p(Y,W|A,V,S)
= p(A|V,S)︸ ︷︷ ︸

Adjacency

p(W|A,V,S)︸ ︷︷ ︸
GNN learning

p(Y|W,A,V,S)︸ ︷︷ ︸
Prediction

. (1)

As illustrated in Figure 1(a), there are many assumptions
about conditional independence in the existing literature,
i.e., S ⊥⊥ A and A,V,S ⊥⊥ Y|W, which all have the
aforementioned drawbacks. In contrast, we argue that S is
indispensable in learning adjacency relationships and mak-
ing predictions, and Figure 1(b) presents the dependencies
in our DAPF. In particular, we aim to learn dynamic em-
beddings and adjacency matrices conditioned on temporal
features. Besides, we propose a variational framework to ap-
proximate the true posterior while learning the distributions
of latent representations.

More specifically, p(A|V,S) in Eq.(1) consists of a nor-
malizing flow (Kim et al. 2020) and a probabilistic adja-
cency matrix construction:

p(A|V,S) =
∑
U

p(A|U)p(U|V,S), (2)
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where U is the latent manifold embedding with a simple
distribution. At a certain time step τ ∈ [1, T ] on the i-th
monitored location, a deterministic mapping f(Vτ ,Sτ |Sτ )
transforms the coordinates vi and deformations sτi to uτi :

log p(vi + sτi ) = log p(uτi )− log

∣∣∣∣det ∂f−1(uτi |sτi )∂uτi

∣∣∣∣ .
(3)

Then, for any two points with learned embeddings ui and
uj , the mapping p(A|U) can be directly computed as:

p(Aτij = 0|uτi ,uτj ) = sigmoid(‖uτi − uτj ‖2), (4)

where Aτij ∈ Aτ , and the similarity between two points is
estimated by a distance in the manifold space.

Let Ω = {A,V,S} for simplicity, the p (Y,W|Ω) in
Eq.(1) is approximated by q (Y,W|Ω) and the variational
inference of the true posterior can be derived as follows:

DKL (q (Y,W|Ω) ‖p (Y,W|Ω))

=DKL (qϕ‖p (W|Ω)) +DKL (qφ‖p (Y|W,Ω))

'DKL (qϕ‖p (W))− Eqϕ [log p (A,S|W)]

−H[qφ (Y|W,S)]− Eqφ [log p (Y)],

(5)

whereDKL is the KL-divergence andH is the entropy, ϕ and
φ are parameters of q(W|Ω) and q(Y|W,Ω) respectively,
and denoted as qϕ and qφ for simplicity. With Eq.(5), the
distributions of p(W) and p(Y) are constrained.

In practice, the densities must be easily obtained, there-
fore we specify qϕ as a variational graph auto-encoder (Kipf
and Welling 2016), and qφ as a dynamic system of Wτ and
Sτ , which can be solved by ordinary differentiable equa-
tions (Grathwohl et al. 2018). Finally, the model is opti-
mized by minimizing the bound Eq.(5) and the mean square
error (MSE) between the predicted and true deformations.

Experiments
Dataset: We conduct experiments on real-world InSAR data
of slopes in a large-scale hydropower station Pubugou Dam1

in the southwest of China. There are 8,671 monitored loca-
tions, each has deformation observations spanning from Nov
17, 2017 to Jan 04, 2020, and the range of displacements is
[-29.06, 30.50] (mm).
Performance Comparison: We report the results of differ-
ent methods on deformation prediction in Table 1. The first
group of approaches is time-series based, and the second
group is spatio-temporal based. Obviously, the second group
achieves better performance because of modeling spatio-
temporal dependencies critical for deformation prediction.
Besides, DAPF achieves significant improvements over the
baselines. These results verify our motivation to construct a
dynamic adjacency matrix and emphasize the importance of
distribution learning in prediction.

Figure 2 plots the learned 2D embeddings via Eq.(3), col-
ored by geographical coordinates. It tells us that DAPF can
obtain clustered embeddings successfully.

1https://en.wikipedia.org/wiki/Pubugou Dam.

Method RMSE MAE ACC EVS

Historical Average 6.067 4.010 0.050 0.164
GRU 0.200 0.160 0.540 0.137
(Chen et al. 2018) 0.053 0.041 0.710 0.412

(Wu et al. 2020) 0.041 0.027 0.854 0.426
(Zhou et al. 2021) 0.024 0.018 0.956 0.478
DAPF 0.016 0.013 0.978 0.496

Table 1: Overall performance comparisons.
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Figure 2: Visualization of surface and manifold embedding.
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