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Abstract

Mathematical knots are interesting topological objects. Us-
ing simple arcs, lines, and crossings drawn on eleven possible
tiles, knot mosaics are a representation of knots on a mosaic
board. Our contribution is using SAT solvers as a tool for enu-
merating nontrivial knot mosaics. By encoding constraints for
local knot mosaic properties, we computationally reduce the
search space by factors of up to 6600. Our future research
directions include encoding constraints for global properties
and using parallel SAT techniques to attack larger boards.

Introduction and Related Work
A mathematical knot is an embedding of a circle in 3D
space, and a link is two or more knots. Knots have appli-
cations in low-energy quantum physics (Hall et al. 2016).
Lomonaco and Kauffman (2008) defined the eleven tiles re-
quired to draw knot mosaics. A tile may be empty, a rotation
of a quarter arc, a horizontal or a vertical line, a rotation of a
double arc, an overcrossing, or an undercrossing. Figure 1A
shows the two crossing tiles.

An n-mosaic is an n× n array (or board) of mosaic tiles;
m × n arrays are also allowed. A tile’s connection point is
where the tile’s curve intersects the midpoint of an edge.
A tile is suitably connected if each of its connection points
touches a connection point of a contiguous neighbor tile.
A knot n-mosaic is an n-mosaic where all tiles are suitably
connected.

Methods to find knot mosaics include counting arguments
(Hong et al. 2014) as well as writing properties by hand for
specific types of knots on a 7× 7 board and using computer
scripts to fill in the combinatorics (Heap and LaCourt 2020).

Our Contribution
Our ultimate research goal is to enumerate all nontrivial
knots on m × n boards. In contrast to the methods of the
related work, our contribution is to use SAT solvers as an
intermediate step to reduce the search space. We encode the
knot mosaic constraints as a Boolean formula and use a SAT
solver to find all satisfying assignments to the formula.
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SAT Formula Encoding
Boolean satisfiability (SAT) is the classic NP-complete
problem. Since knot mosaics are a combinatorial problem, a
SAT formula can encode suitably connected mosaics. Each
variable corresponds to a tuple (i, j, k), which means that
tile k is at location (i, j). The SAT solver sets every vari-
able to either True or False based on the allowed tiles at
neighboring locations. We encoded three increasingly more
restrictive constraints. These constraints manage local prop-
erties of a mosaic, which are properties that relate to a tile
and its immediate neighbors.

(a) Basic encoding. The board size is m×n, infinite tiles
are available, and there must be exactly one tile per board
(i, j) location. We encoded the possible neighbors for each
tile in the left, right, top, and bottom directions. We encoded
the tiles that are allowed in the corners and edges (e.g., T9
may never be in a corner). The size of the corresponding
SAT formula is O(mn).

(b) Require at least 3 crossing tiles. We encode that at
least 3 crossing tiles (T9 and T10) must be used and that
those tiles must be 2 of one type and 1 of the other type.
This simple improvement gives a better chance of produc-
ing a nontrivial knot (Figure 1C) but does not guarantee a
nontrivial knot; for example, Figure 1D has three crossing
tiles, but the knot is still the unknot. The size of the corre-
sponding SAT formula is O((mn)3), which is large but still
polynomial.

(c) Ban trivial substructures. We banned 2 × 2 trivial

(A) X’ings
(B) Not conn’d (C) Trefoil knot (D) Trivial knot

Figure 1: (A) The two possible crossing tiles T9 and T10.
(B) A mosaic that is not suitably connected. (C) A repre-
sentation of the trefoil knot, which is the simplest nontrivial
knot. (D) A representation of the trivial unknot, which was
formed by swapping exactly one crossing tile from the tre-
foil knot. Two 2× 2 trivial caps are highlighted in gray.
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m n added constraints # vars ∼# clauses ∼ ϕ size (kB) ∼time (sec) # solutions ∼improvement

4 6 (a) basic encoding 264 1,900 30 6,400 1,144,526 solver finished
4 6 (b) at least 3 T9/T10 264 2,400 130 600 437,332 3×
4 6 (c) ban trivial 264 5,700 190 <1 590 1940×
5 5 (a) basic encoding 275 2,000 30 90,400 4,183,954 solver finished
5 5 (b) at least 3 T9/T10 275 2,600 140 21,400 2,054,724 2×
5 5 (c) ban trivial 275 6,000 210 <1 1,374 3050×
5 6 (a) basic encoding 330 2,400 40 out of RAM 331,745,962 –
5 6 (b) at least 3 T9/T10 330 3,300 230 timeout – –
5 6 (c) ban trivial 330 7,600 320 6 49,570 6690×
6 4 (a) basic encoding 264 1,900 30 8,900 1,144,526 solver finished
6 4 (b) at least 3 T9/T10 264 2,400 130 1,100 437,332 3×
6 4 (c) ban trivial 264 5,700 190 <1 590 1940×
6 5 (a) basic encoding 330 2,400 40 timeout 331,745,962 –
6 5 (b) at least 3 T9/T10 330 3,300 230 timeout – –
6 5 (c) ban trivial 330 7,600 320 6 49,570 6690×
6 6 (a) basic encoding 396 2,900 50 out of RAM 101,393,411,126 –
6 6 (b) at least 3 T9/T10 396 4,100 390 out of RAM – –
6 6 (c) ban trivial 396 9,500 500 timeout – –

Table 1: Improvement when adding constraints, where improvement means “the integer factor by which the search space was
reduced from the base case of all possible suitably connected knot mosaics to possibly nontrivial knots.” The SAT formula
is ϕ. The time is the total running time for the solver bc minisat all static (Toda and Soh 2016), which was run on a
research computing cluster with Intel R© Xeon R© Gold 6150 CPU @ 2.70GHz. The timeout was 48 hours [172,800 seconds], and
the RAM limit was 2048 MB. For entries where the solver finished the basic encoding, the number of mosaics agrees exactly
with the results from (Hong et al. 2014); otherwise, the table gives the known count from Hong et al.

substructures such as flips, caps (e.g., the gray tiles in Fig-
ure 1D on the previous page), 4-tile circles, ellipses, etc.
These trivial substructures are related to the standard Rei-
dermister moves (Reidemeister 1927). The size of the corre-
sponding SAT formula is O(mn) since for an m× n board,
there are a fixed number of 2×2 trivial substructures to ban.

Results and Future Work
Table 1 shows our results.1 As a self-check, the number of
solutions found by the SAT solver for m × n and n × m
boards agree exactly. Our selected constraints are effective
in reducing the search space from intractable to tractable;
for example, on a 6 × 5 board, the solver went from timing
out to finishing in 6 seconds.

There are two interesting timing results for the basic en-
coding case [constraint (a)]. First, the running times for the
4× 6 and 6× 4 boards are 40% different. Second, the 5× 6
board ran out of RAM, but the 6 × 5 board ran out of time.
Since the only change was the order of m and n when writ-
ing the formula, for future work, we will study the SAT
solver behavior on these instances.

The number of closed loops on a mosaic board is a global
property of the mosaic. Because the current SAT formula
encodes only local properties, the formula can produce links
(two or more closed loops on the board). Since we are in-

1We ran all possible combinations up to 6×6 boards, but to save
space, we only report the board sizes with over 1 million knots.

terested in knots (a single closed loop) and not links, for
the knot theory portion of our future work, we will encode
the single-loop global property as a coloring in the SAT for-
mula. For the SAT portion of our future work, we plan to in-
vestigate using parallel SAT techniques such as sharing the
learned clause database among parallel cores.
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