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Abstract
We recommend using a model-centric, Boolean Satisfiabil-
ity (SAT) formalism to obtain useful explanations of trained
model behavior, different and complementary to what can be
gleaned from LIME and SHAP, popular data-centric expla-
nation tools in Artificial Intelligence (AI). We compare and
contrast these methods, and show that data-centric methods
may yield brittle explanations of limited practical utility. The
model-centric framework, however, can offer actionable in-
sights into risks of using AI models in practice. For critical
applications of AI, split-second decision making is best in-
formed by robust explanations that are invariant to properties
of data, the capability offered by model-centric frameworks.

Introduction
Artificial Intelligence (AI)-driven decision making is in-
creasingly used to support human decisions. In practice, the
adoption of intelligent systems hinges on the ability of users
to understand why a prediction was generated and how to
ensure a desired output. Trust and transparency in AI is es-
sential in high-stakes application domains, including health-
care, where wrong decisions may bear grave consequences.
Common explanatory tools, including Local Interpretable
Model-Agnostic Explanations (LIME) (Ribeiro, Singh, and
Guestrin 2016) and Shapley Additive Explanations (SHAP)
(Lundberg and Lee 2017), are data-centric. They assess con-
tributions of individual attribute values to predictive perfor-
mance of the models. Insights gleaned from such analyses
are primarily of confirmatory value; a clinician can confirm
that the model pays attention to similar features that she
would consider in analyzing her current patient. However,
these tools can be brittle, hide biases, and do not provide
useful diagnostic information about safety of the models.
Conversely, formal methods can be used to mathematically
prove desired reliability properties of the models, eliminat-
ing human biases and statistical errors from the process.We
extend these methods to provide minimal-distance counter-
factuals that find minimal changes to attribute values needed
to cause the model to change its prediction. This analysis
can expose limitations of models and data used to train them,
enabling development of provably robust AI-driven decision
support systems.
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Methodology
Data and Models. We use the publicly available Breast
Cancer Wisconsin (Diagnostic) dataset (Dua and Graff
2017).It contains 30 numeric features which we standard-
ized by removing the mean and scaling to unit variance. We
explain Scikit-learn (Pedregosa et al. 2011) random forests,
trained with a 50% train/test split. Our model consists of ten
decision trees of the maximum depth of ten.
Experiments. We formally test trained tree ensembles with
a SAT formalism. To find minimal distance counterfactual
explanations, we start with a query and a local neighborhood
in which to search for another data point to which the model
assigns a different predicted label. If such a point exists, a
satisfying assignment detailing the model state for the two
points is returned, otherwise, we increase the size of the lo-
cal neighborhood and search again. This process continues
until a counterfactual is found. The relevant differences be-
tween the two points which form the counterfactual can be
revealed by finding all differences within the satisfying as-
signments. We only report encoded threshold values which
must be crossed in order for the model to change its pre-
diction, which may be interpreted as, ’if we change select
attribute values in a query by a small amount, the model will
change its prediction’.

We studied the stochasticity of feature importance in
the LIME (Ribeiro, Singh, and Guestrin 2016) and SHAP
(Lundberg and Lee 2017) frameworks. Using those tools, we
returned the n most important features where n = 1...30.
We iterated over all test data and recorded the n most im-
portant features. We then evaluated the probability that each
feature was one of the most influential variables in the test
dataset when n was set. Since LIME and SHAP displayed
similar behaviors, we show feature importance attribution
plots for just LIME where three features that were consis-
tently picked as important are displayed in the bottom row
of Fig. 2. The horizontal axis in each of these plots shows the
index of the feature in the importance ranking and the ver-
tical axis shows the estimated probability of the feature at-
taining such rank. Generally, truly important features would
have this probability raise quickly as a function of the rank
index, and stay high. E.g., in the example shown in Fig. 2,
feature mean concave points appears slightly more impor-
tant than worst concave points and worst concavity.

We explored explanations generated by SAT. We looked
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Figure 1: SAT Explanation - Counterfactual. Our explanation presents a set of the smallest changes necessary to change the
model output. The bar graph shows the percent change that is required along each attribute to change the output of the model.

Figure 2: Feature attribution for LIME [bottom] and aggre-
gate summary of SAT counterfactual explanations [top]

at the 17 points in the test data that were misclassified. Each
explanation had a set of features that needed to be changed
to flip the prediction. We iterated over all the explanations
and recorded the percentage change over the range of values
of each feature that would be required to modify the pre-
diction, and visualized their distributions in kernel density
estimation plots. The top row of Fig. 2 shows these charac-
teristics for the same three features as above. Model-centric
explanation suggests that fixing these 17 errors will require
increasing the value of worst concavity by 5-10%. The other
two features do not show such a consistent recipe for error
correction, even though LIME suggests they are important.

Analysis
Fig. 1 shows an example model-centric explanation gener-
ated by our framework for one query. The current feature
value for the suspected breast cancer mass is denoted in bold
while the value it would need to be modified to is shown in
italics. The left part of the graph shows the seven attribute
changes required by the model to change its prediction, and
the right part shows the percentage change of value of each
feature needed to cause such change. This type of explana-
tion brings our attention to features that can compromise ro-
bustness of the model: the lower the relative value change
needed to affect the output, the narrower the margin for mea-
surement error in the model.

This result has multiple potentially useful consequences.
One example is confirmatory analysis of a prediction made
by an AI-driven tool used by a clinician to help her diagnose
a patient. If only a small change of one of the features, re-

flecting, e.g., some laboratory test result, can flip the predic-
tion, the doctor may consider repeating the test to ascertain
its outcome, or order a more precise test. Similarly, when de-
signing AI-based decision systems that operate on measure-
ments collected with noisy sensors with known sensor noise
models, the design engineer may verify that the magnitude
of sensor noise does not exceed the range of robustness re-
vealed for the corresponding feature of the AI model.

To accomplish the second task type, we can leverage SAT
score characteristics analogical to those shown in the top
row of Fig. 2, but in this case we would obtain them using
correctly classified test data. Features mean concave points
and worst concave points are highly important according
to LIME, but their SAT score distribution characteristics
show large probability masses in the range of very small
percentage changes needed to invert the model prediction.
The physician and the engineer from our examples should
be very careful and, if possible, measure values of these fea-
tures with very high accuracy. On the other hand, feature
worst concavity leaves our engineer with some margin of er-
ror, because non-trivial changes of its value are required to
impact the model prediction.

Model-centric formal methods provide useful capabilities
complementary to the existing explanatory analysis tools.
They are based on mathematical logic and yield provable re-
sults that can be verified exactly, as opposite to the prevalent
statistical methods that produce results with margins of con-
fidence. We envision beneficial use of these methods at all
stages of life of AI systems: from design to field application.

Acknowledgements
This work was supported by a STRI grant from NASA’s
Space Technology Research Grants Program; DARPA
[award FA8750-17-2-0130]; and the U.S. Department of
Homeland Security Countering Weapons of Mass Destruc-
tion Office [award 18-DN-ARI-00031].

References
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml].
Lundberg, S. M.; and Lee, S.-I. 2017. A Unified Approach to In-
terpreting Model Predictions. 4765–4774. Curran Associates, Inc.
Pedregosa, F.; et al. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12: 2825–2830.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why Should
I Trust You?”: Explaining the Predictions of Any Classifier.
1135–1144. Association for Computing Machinery.

13020


