
Integer and Constraint Programming Revisited
for Mutually Orthogonal Latin Squares (Student Abstract)

Noah Rubin,1 Curtis Bright,2,1 Brett Stevens,1 Kevin Cheung1

1Carleton University, School of Mathematics and Statistics
2University of Windsor, School of Computer Science

noahrubin@cmail.carleton.ca, cbright@uwindsor.ca, brett@math.carleton.ca, kevincheung@cunet.carleton.ca

Abstract

We use integer programming (IP) and constraint programming
(CP) to search for sets of mutually orthogonal latin squares
(MOLS). We improve the performance of the solvers by for-
mulating an extended symmetry breaking method and provide
an alternative CP encoding which performs much better in
practice. Using state-of-the-art solvers we are able to quickly
find pairs of MOLS (or prove their nonexistence) in all orders
up to and including eleven. We also analyze the effectiveness
of using CP and IP solvers to search for triples of MOLS and
estimate the running time of using this approach to resolve the
longstanding open problem of determining the existence of a
triple of MOLS of order ten.

Introduction
A latin square of order n is an n × n array, L, of sym-
bols {0, 1, . . . , n− 1} in which each symbol appears exactly
once in each row and column. The entry in row i and col-
umn j of a square L is denoted Lij . Two latin squares of
the same order, L and M , are said to be orthogonal if there
is a unique solution Lij = a, Mij = b for every pair of
a, b ∈ {0, 1, . . . , n− 1}. A set of k latin squares of order n,
is called a set of mutually orthogonal latin squares (MOLS)
if all squares are pairwise orthogonal—in which case we
label the system as kMOLS(n).

There is a long history of using automated reasoning tools
like constraint and integer programming solvers to search for
and construct latin squares (Gomes 2000). In this project we
use off-the-shelf constraint programming (CP) and integer
programming (IP) solvers to find mutually orthogonal latin
squares (or disprove their existence) in all orders up to and
including eleven. We also develop two main improvements
to the IP and CP models originally described by Appa et al.
(Appa, Magos, and Mourtos 2006). First, we improve the con-
straint programming model by using indexing constraints to
encode orthgogonality, which performed significantly better
than the standard constraint programming encoding—using
a CP solver we were able to find or prove the nonexistence
of 2MOLS(n) for n ≤ 11 with our improved encoding com-
pared to n ≤ 8 with the usual encoding. Our improved con-
straint programming formulation is described below. Table 1

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

compares the running times across all three models encod-
ing the 2MOLS(n) problem, and shows the superiority of
this encoding. Second, we developed an improved symme-
try breaking method (described below) that removes more
symmetry from the search space than the “domain reduction”
symmetry breaking method used in previous searches (Appa,
Magos, and Mourtos 2006; Appa, Mourtos, and Magos 2002).
Our new symmetry breaking method reduces the amount of
symmetry present in the kMOLS(n) search by an expo-
nential factor in n when compared with domain reduction
symmetry breaking. The new symmetry breaking method
performs well in practice, particularly with the integer pro-
gramming model—using an IP solver we were able to find
or prove the nonexistence of 2MOLS(n) for n ≤ 10 with
our improved symmetry breaking compared to n ≤ 8 with
domain reduction symmetry breaking.

Constraint and Integer Programming Models
Let X and Y be two mutually orthogonal latin squares of
order n with entries Xij and Yij for 0 ≤ i, j < n. One
method of approaching the 2MOLS(n) problem is to ex-
press it as a pure binary linear program and use an integer
programming (IP) solver to generate solutions (Dantzig 1963,
§26.3.IV). Our IP model for a set of two mutually orthogonal
latin squares contains the n4 binary variables

xijkl :=

{
1 if Xij = k and Yij = l

0 otherwise

for all i, j, k, l ∈ {0, 1, . . . , n − 1}. The latin and orthogo-
nality constraints are expressed as six sets of n2 equalities
grouped by which subscripts of xijkl are fixed. A CP solver
allows a more natural formulation of the 2MOLS(n) prob-
lem using the 2n2 integer-valued variables

Xij := value of cell (i, j) in square X,
Yij := value of cell (i, j) in square Y ,

where i, j,Xij , Yij ∈ {0, 1, . . . , n − 1}. The squares X
and Y can be forced to be latin squares via “AllDifferent”
constraints which specify that the rows and columns of the
squares each contain different values. Appa et al. provide an
encoding of orthogonality by defining Zij := Xij+nYij and
imposing AllDifferent(Zij ∀i, j); we call this the CP-linear
encoding.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13037



Viewing the rows of X and Y as permutations on
{0, 1, . . . , n − 1} we define XY as the square whose ith
row is row i of Y applied to row i of X . We also define X−1
as the square whose ith row is the inverse permutation of
row i of X . Our alternative orthogonality encoding is based
on (Laywine and Mullen 1998, Theorem 6.6) which implies
two latin squares X and Y are orthogonal if and only if
there is a latin square Z such that XZ = Y . The additional
variables in our alternative orthogonality encoding are

Zij := value of cell (i, j) in square Z = X−1Y,

where Zij ∈ {0, 1, . . . , n− 1}. In order to ensure Y = XZ
the (i, j)th entry of Y is set equal to the (i,Xij)th entry of Z
using the “element indexing” constraint Zi[Xij ] = Yij where
Zi is the vector of variables corresponding to row i of Z. The
constraints encoding that the squares X and Y are orthog-
onal are then AllDifferent(Zij ∀j) and AllDifferent(Zij ∀i).
We call this the CP-index encoding and altogether it uses
6n AllDifferent constraints and n2 element indexing con-
straints. This encoding also may be extended to encode the
3MOLS(n) problem by adding another n2 variables encod-
ing the entries of a third latin square U and using the same
orthogonality constraints as above between X and U and Y
and U .

Symmetry Breaking
There are a large number of symmetries in the kMOLS(n)
problems. In any set of kMOLS(n), the rows and columns
of squares can be permuted simultaneously. The symbol sets
within each square can be permuted independently and the
squares may all be replaced with their transposes. All of these
operations preserve the latin properties and orthogonality of
the set of squares (Colbourn and Dinitz 2006). The search
space can be reduced significantly for any elimination of sym-
metries that still permits finding an isomorphic representative
of any solution. Appa et al. fix the first row of every square to
be in lexicographic order which eliminates the permutations
of the columns and fixes the symbol permutations to be the
same in each square. They fix the first column of the first
square to be in lexicographic order which eliminates permu-
tations of the rows. This reduces the possible symmetries to
2k!n!. With these cells fixed, the first column of Y must be a
permutation where Yi0 6= i for 1 ≤ i < n.

Appa et al. (Appa, Mourtos, and Magos 2002) use domain
reduction to further reduce the number of possibilities. We
show that the number of possibilities for the first column of Y
is reduced to Fn−2, the (n− 2)th Fibonacci number. By ex-
ploiting the disjoint cycle structure of these permutations, we
are able to further reduce this to the number of partitions of
n−1 into parts of size greater than 1. This quantity is eO(

√
n)

and is exponentially smaller than Fn−2 (OEIS Foundation
Inc. 2021).

In detail, let X and Y be a pair of orthogonal latin squares
in standard form: the first rows of both are in lexicographic
order and the first column of X is in lexicographic order.
The first column permutation of Y is ρ(i) = Yi0. We prove
that any pair of orthogonal latin squares is isomorphic to a
pair (X,Y ) in standard form where ρ’s disjoint cycles, when

Figure 1: A comparison of the running times for the various
models and symmetry breaking methods that we considered
in the orders 5 ≤ n ≤ 11.

Model 5 6 7 8 9 10
IP 0.1 Timeout 3.2 6.4 344.5 3,046.4

CP-linear 0.0 Timeout 8.0 1,967.1 58,637.8 Timeout
CP-index 0.0 Timeout 7.8 36.3 378.7 214.8

Table 1: Timings in seconds for orders 5 ≤ n ≤ 10 with no
symmetry breaking. All models timed out at 60,000 seconds
for n = 11.

listed in lexicographic order, are from shortest to longest.
This fact applies equally well to a set of kMOLS(n), and
implies that we can restrict the first column of the second
square to be in a fixed set of canonical representatives (one
from each cycle type). Figure 1 contains a plot comparison
of the running times observed by using each of our available
symmetry breaking methods. More detailed timings, proofs
and complete implementations of our programs can be found
at https://github.com/noahrubin333/CP-IP.

References
Appa, G.; Magos, D.; and Mourtos, I. 2006. Searching for
Mutually Orthogonal Latin Squares via integer and constraint
programming. European Journal of Operational Research,
173(2): 519–530.
Appa, G.; Mourtos, I.; and Magos, D. 2002. Integrating
Constraint and Integer Programming for the Orthogonal Latin
Squares Problem. In Lecture Notes in Computer Science, 17–
32. Springer Berlin Heidelberg.
Colbourn, C. J.; and Dinitz, J. H. 2006. Handbook of combi-
natorial designs. CRC press.
Dantzig, G. 1963. Linear programming and extensions. Num-
ber 48 in Princeton Landmarks in Mathematics and Physics.
Princeton University Press.
Gomes, C. P. 2000. Structure, duality, and randomization:
Common themes in AI and OR. In AAAI-00 Proceedings,
1152–1158.
Laywine, C. F.; and Mullen, G. L. 1998. Discrete mathemat-
ics using Latin squares. John Wiley & Sons.
OEIS Foundation Inc. 2021. The On-Line Encyclopedia of
Integer Sequences. http://oeis.org/A002865.

13038


