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Abstract

For better monitoring and controlling influenza, WHO has
launched FluNet (recently integrated to FluMART) to pro-
vide a unified platform for participating countries to routinely
collect influenza-related syndromic, epidemiological and vi-
rological data. However, the reported data were incomplete.
We propose a novel surveillance system based on data from
multiple sources to accurately assess the epidemic status of
different countries, especially for those with missing surveil-
lance data in some periods. The proposed method can auto-
matically select a small set of reliable and informative indica-
tors for assessing the underlying epidemic status and proper
supporting data to train the predictive model. Our proactive
selection method outperforms three other out-of-box meth-
ods (linear regression, multilayer perceptron, and long-short
term memory) to make accurate predictions.

Introduction
Influenza is one of the most prevalent diseases around the
world, resulting in substantial morbidity and mortality ev-
ery year worldwide. To effectively monitor and control in-
fluenza, WHO has launched FluNet in 1997 (which was in-
tegrated into FluMART) (Hamid, Bell, and Dueger 2017) to
provide a global platform to share influenza epidemiological
data and virological data.

However, the reported data are incomplete. On FluMART,
153 out of 196 countries (78%) can only provide both syn-
dromic and virological data in less than 50% weeks between
2010-2020. For example, as illustrated in Figure 1, Austria
started reporting from 2010 while Armenia started reporting
from 2011, and Austria suspended reporting occasionally
since 2014.The incomplete data makes it difficult to assess
the epidemic status of influenza in different countries (Pei
et al. 2021). In order to address this problem, we propose a
novel surveillance system based on multiple data sources to
accurately assess the epidemic status of different countries,
especially for those without surveillance in some periods.

There are two advanced features in our proposed surveil-
lance system:
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Figure 1: Availability of Influenza A report data(number of
influenza A positive samples) in Armenia and Austria. Red
indicates the periods when the report data is missing.

1. Robust estimation using reliable indicators. Given the
rich amount of the available indicators, the surveillance
system is able to automatically select a small set of reli-
able and informative indicators for assessing the under-
lying epidemic status;

2. Adaptation to concept drift. The number of reported
cases is dependent on both clinical criteria and clinical
organization. This surveillance system is able to automat-
ically select data to train the predictive model to reduce
thus a bias.

Proposed Method
Multi-Source Predictive Model
Let X ∈ ℜC×D×T be the data tensor, where C is the num-
ber of countries, D is the number of the attributes and T is
the length of time slots. Specifically, X[i,:,:] is the i-th slice
of the tensor corresponding to the data of the i-th country
of all attributes and all time slots, and similarly X[i,j,t1:t2] is
data of the j-th attribute and i-th country from t1 to t2 time
slot. Without loss of generality, we aim to develop a predic-
tive model to estimate the unknown Influenza infections (the
fcol-th attribute) in the i-th country using all available data:

X[i,fcol,t] = F (zt), zt = S(X[:,:,:t]) (1)

where S denotes the feature generation function and F de-
notes predictive function. As the report system is not al-
ways reliable, there are many missing values in the data
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tensor X, which poses great challenges to predictive anal-
ysis. To generate the reliable features fed into the predictive
model, we select several indicators that are available at all
time slots. We denote the set of these supporting indicators
as K = [(c1, a1), (c2, a2), . . .]. For predicting the target in-
fluenza value at time slot t, the supporting indicators of the
previous tξ time slots are informative and thus we vectorize
them as the features:

zt = S(X[:,:,:t]) = vec(X[K,t−tξ:t]) (2)

We use a linear model to model the predictive function, be-
cause it is efficient for training and capable of modeling
the cross-region influence. The mathematical equation of the
predictive model is written as:

X[i,fcol,t] = F (zt) = Wzt (3)

Model Training
The dimension of the size of the feature would be large,
which may cause the prediction to become less robust to
the unexpected value missing of the supporting indicators
and noise. Therefore, we would expect that the weighting
W is sparse so that only some key supporting indicators are
selected in the predictive model. Therefore, we add the l1
norm at the weighting as penalization (Tibshirani 1996). The
training objective become:

min
T∑
t

||X[i,fcol,t] −Wzt||22 + λ||W ||1 (4)

Due to the concepts drift, the samples with large time
lags are less informative for predicting the current sam-
ples. Therefore, we reweight the samples in the training. The
training objective is extended as

min
T∑
t

ut||X[i,fcol,t] −Wzt||22 + λ||W ||1 (5)

where ut = 1/ log(β(t′ − t) + 2) and t′ is the testing time
slot. The parameter β controls the scale of time vanishing.

We use cross-validation to determine two hyper-
parameters λ and β. In the training data, we use the first
80% for learning model and the latter 20% as validation. We
use grid search to select the value pair of λ and β with the
best validation score. The candidate hyper-parameter values
for λ is [10, 1, 0.1, 0.001, 0.0001] and the candidate hyper-
parameter values for β is [1, 0.1, 0.01, 0.001, 0.0001].

Performance Evaluation
To evaluate the performance of our proposed method, we
apply it on the influenza data of 132 countries from 2009 to
2020 which are collected from FluMART(http://apps.who.
int/flumart/Default?ReportNo=12). Figure 2 shows the pre-
diction result on the number of influenza A positive samples,
where the blue line indicates the ground-truth surveillance
data, the red line indicates the fitting result and the yellow
line indicates the prediction result.

We compare the RMSE of our method and three oth-
ers (the out-of-box linear regression, and two out-of-box

Figure 2: An illustration of prediction result of proposed
method on the number of influenza A positive samples. The
blue line is the surveillance data, the orange line is fitting
result, and the yellow line is the prediction result.

Method RMSE
Linear without selection 9.3410e+03
Multilayer perceptron 1.1632e+04

Long-short term memory 7.8207e+03
Our method 6.5383e+03

Table 1: Prediction error (RMSE) of different methods on
Influenza A. The best performance is highlighted in bold.

deep neural network models [e.g., multilayer perceptron
and long-short term memory] (Goodfellow, Bengio, and
Courville 2016)) on the prediction of numbers of influenza
A positive samples in 132 countries through 2009 to 2020,
as shown in Table 1. The result shows that our method has
the lowest RMSE than the three others.

Conclusion and Future Work
In this paper, we propose a feature selection and temporal
weighting model for influenza surveillance and demonstrate
its effectiveness. In future we will apply and evaluate this
method in the surveillance-related studies.
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