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Abstract
We consider a class of visual analogical reasoning problems
that involve discovering the sequence of transformations by
which pairs of input/output images are related, so as to anal-
ogously transform future inputs. This program synthesis task
can be easily solved via symbolic search. Using a variation
of the ‘neural analogical reasoning’ approach, we instead
search for a sequence of elementary neural network transfor-
mations that manipulate distributed representations derived
from a symbolic space, to which input images are directly
encoded. We evaluate the extent to which our ‘neural reason-
ing’ approach generalises for images with unseen shapes and
positions.

Introduction
We consider a class of simple visual reasoning tasks speci-
fied by pairs of (input, output) images, all of which are re-
lated by the same unknown transformation procedure. Given
a new image, the task is to generate the correct output in
an analogous manner to the examples provided. We model
this task as a program synthesis problem, where the map-
ping between input and output is represented by a compo-
sition of elementary transformations. Building on previous
program synthesis approaches which construct complex pro-
grams from simpler primitives, we employ a variation on
the neural algorithmic reasoning (Veličković and Blundell
2021) framework to replace elementary symbolic transfor-
mations with equivalent neural networks, and examine if this
leads to the generalisation which is the basis of analogical
reasoning.

We decouple representation learning from transform
learning, first learning a latent representation that captures
key information from the input followed by learning trans-
forms inside this representation space for which input-output
examples have been given. Fig 1 provides an overview of our
approach wherein we search over possible combinations of
primitives until one is found that satisfies all the example
pairs. This solution is thus a neural algorithm, i.e., a compo-
sition of elementary neural networks, rather than a symbolic
program, corresponding to the unknown analogical relation,
which we can then apply to any query image to obtain an
analogous result (output image).
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Figure 1: Overview

Methodology
The images considered consist of simple shapes (from a 20
member set of alphabets and polygons) placed on a 3×3 grid
while positional shifts and shape conversions make up the
elementary transforms with which to compose our solutions.

Representation Learning Let a latent space be charac-
terised by an encoder E that maps natural inputs (e.g. im-
ages) to their latent representations (real-valued vectors).
Since we are interested in spaces that are rich enough to rep-
resent a wide variety of shapes and sparse enough to repre-
sent concepts distinctly, we first construct a space based on
symbolic descriptions of the input images containing infor-
mation on the shapes and their positions in the 2D grid. For
this, we train an autoencoder (Encoder: Es,Decoder: Ds on
the multi-hot (Boolean) vector representations of symbolic
descriptions by minimising the negative log-likelihood loss
between the inputs and the reconstructed vectors.

To be able to handle image inputs (denoted by xs),
we train a CNN based encoder Ex to fit to the outputs
of Es (with frozen weights) by minimising the mean-
squared-error over the encodings of images Ex(x

(i)) and
encodings of the corresponding symbolic vectors Es(s

(i)):
MSE

(
Ex(x

(i)), Es(s
(i))

)
.

To be able to handle shapes at test time that were not seen
during training, we also include an additional shape-label
called unseen. We then train Ex to map some set of shapes
to the latent vectors generated by Es corresponding to the
unseen labels.
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Transform Training We use single hidden layer MLPs as
the neural transform networks Tis that manipulate the la-
tent representations of the input images where a transform
refers to some spatial transformations on the original space
(images). For our experiments, we consider positional shifts
in the ordinal directions (e.g. shift-right moves each
shape in the image one grid-position to the right) and shape
conversions (e.g. to-square converts each shape in the
image to a square). We construct a separate transform net-
work Ti for each such spatial transformation, and learn its
weights by minimising the negative log-likelihood between
Ds(T (Es(s

(i))) and the multi-hot vector corresponding to
the symbolic description of the transformed image, while
keeping the encoder and decoder weights frozen.

Figure 2: Pipeline

Program Evaluation We define primitives as transforms
or special operations (reset and out); programs are se-
quences of such primitives. As shown in Fig. 2, the input im-
age is preprocessed to extract individual shapes by identify-
ing the connected components. Each isolated image is con-
verted into a latent vector using the encoder Ex and stored
in the input buffer. Algorithm 1 is applied and the resultant
latent vectors in the output buffer are converted to their sym-
bolic descriptions using Ds. The final image is constructed
by drawing the corresponding shapes and combining them
into a single image. (In the case of shapes marked as unseen
in the symbolic description, we keep track of the original
shape from the input and use it to generate the output.)

Algorithm 1: Program Execution
Input: Set of latent vectors zks for input, program P
Output: Set of latent vectors for output

1: Let input = {zk}, memory = ∅, output = ∅
2: for i = 1 : length(P ) do
3: if P [i] = out then
4: output← output ∪ memory
5: else if P [i] = reset then
6: memory← input
7: else
8: memory← {P [i](zk), ∀zk ∈ memory}
9: return output

Searching for Solution Given an (input, output) pair of
images, we find the program that maps each input shape to
the corresponding shape in the output by performing an ex-
haustive search over sequences of primitives. Various prun-
ing measures are built into the search to make it tractable.

Results and Discussion
We evaluate our proposed system using ratio of (input, out-
put) pairs for which a valid program is found. These pairs
are generated from a dataset of 16743 programs (1000 pro-
grams for each length up to 20 with redundant programs re-
moved). Fig. 3 suggests that our system is able to find the
correct solutions for the complete dataset as well as all pro-
grams containing direct compositions of transforms up to
length 5, demonstrating that conceptual integrity is main-
tained throughout successive transform applications. This is
not the case when using a latent space based on an autoen-
coder trained on images as opposed to multi-hot vectors,
suggesting a well-structured embedding space is particularly
important in this setting.

We evaluate how well transforms Tis and image encoder
Ex can generalise by withholding shapes during training and
including them during evaluation. Note that when evaluating
transforms with varying number of seen shapes, the encoder
and decoder have seen all 20 shapes during training. When
evaluating the encoder, the unseen label is used in addition
to the labels corresponding to images seen during transform
training; for this experiment, of the 20 shapes available, 4
have labels included in the symbolic descriptions while the
rest are considered to have the label unseen. From Fig. 3,
we see that performance improves with more shapes seen
during training (as expected). However, the system is able to
generalise since it finds a valid programs a significant por-
tion of the time even when observing very few shapes during
training. We observe similar results when evaluating gener-
alisation to unseen grid-positions occupied by the shapes.

Figure 3: Generalisation Experiments

While our approach is limited by the use of classical
algorithms for shape extraction as well as the mechanism
for handling unseen shapes within a fixed symbolic code,
we demonstrate within-domain generalisation capabilities
(shapes seen during training the encoder but not transforms).
Our approach, based on manipulating latent space represen-
tations, is, we submit, a step towards fully neural analogical
reasoning with out-of-domain generalisation.
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