The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Sampling and Counting Acyclic Orientations in Chordal Graphs
(Student Abstract)

Wenbo Sun*

Rochester Institute of Technology
Rochester, NY, U.S.A.
ws3109 @rit.edu

Abstract

Sampling of chordal graphs and various types of acyclic ori-
entations over chordal graphs plays a central role in several
Al applications such as causal structure learning. For a given
undirected graph, an acyclic orientation is an assignment of
directions to all of its edges which makes the resulting di-
rected graph cycle-free. Sampling is often closely related to
the corresponding counting problem. Counting of acyclic ori-
entations of a given chordal graph can be done in polynomial
time, but the previously known techniques do not seem to
lead to a corresponding (efficient) sampler. In this work, we
propose a dynamic programming framework which yields a
counter and a uniform sampler, both of which run in (essen-
tially) linear time. An interesting feature of our sampler is
that it is a stand-alone algorithm that, unlike other DP-based
samplers, does not need any preprocessing which determines
the corresponding counts.

Introduction

Sampling and counting of different types of acyclic orien-
tations over chordal graphs attracted attention in several Al
research areas, for example in structure learning of Bayesian
networks (Ganian, Hamm, and Talvitie 2020; Ghassami
et al. 2019; Talvitie and Koivisto 2019; Wienobst, Bannach,
and Liskiewicz 2020). A graph is chordal if each of its cycles
of length at least four has an edge that connects two nonad-
jacent vertices in that cycle. Counting and sampling itself is
a hot research area in the theoretical community. Counting
of acyclic orientations is a special case of the Tutte poly-
nomial of a graph, which plays an important role in graph
theory and it is related to some important graph quantities
such as the chromatic number (number of colorings) and the
number of strong orientations. Computing these quantities is
usually NP-hard on general graphs, so calculating them ef-
ficiently under some constraints, such as counting over spe-
cial types of graphs, is a natural research direction. It has
been proved that the number of acyclic orientations is equal
to the evaluation of the chromatic polynomial at -1 (Stanley
1973). Remarkably, the calculation of the chromatic poly-
nomial can be done in polynomial time on chordal graphs
(Naor, Naor, and Schiffer 1989), and, therefore, the number

“Partially supported by NSF award 1819546.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of acyclic orientations can be computed in polynomial time
in this graph class. But, to the best of our knowledge, the
problem is not known to be self-reducible and, prior to our
work, the existence of an efficient uniform random sampler
for acyclic orientations in chordal graphs was unknown.

In this work we present a dynamic programming approach
over the clique tree structure of chordal graphs, which yields
an almost linear time counter and a linear time uniform sam-
pler for acyclic orientations in this graph class.

Preliminaries: Chordal Graphs, Clique Trees

For a graph GG, we use G[U] to denote the graph induced in
G on the vertex set U C V(G). Every chordal graph G can
be represented by a clique tree T where V(T¢) is the set
of maximal cliques of G and the tree satisfies the induced
subtree property: For every vertex v € V(G), the induced
subgraph T¢; [A,] is connected, where A, is the set of max-
imal cliques of G containing v. Let Tz ¢, be the clique tree
T¢ rooted at a maximal clique C... If G is clear from the
context, we will simply write T¢c, . We denote by T, ¢ the
subtree of T containing C' and its descendants; we write
Tc if C, is clear from the context.

Each clique C' in T, can be partitioned into a separator
set Sep(C') = C N Parent(C) and a residual set Res(C) =
C\ Sep(C'), where Parent (C) is the parent clique of C in
Te, (if C = C,, then Parent(C') = 0). The following prop-
erties hold:

* For each vertex v in G, there is a unique clique C,,
that contains v in its residual set. This implies that
|V (Te)| < |V(G)] and that C,, is the root of T, [A,];
we denote this rooted subtree by T, . All other cliques
in Tz, that contain v have it in their separator set.

* For a clique C let D(C) be the set of vertices in the
descendant cliques of C in T¢, except Sep(C), i.e.,
D(C) = Ucrevre)C" — Sep(C). Let A(C) be the
vertices in the cliques not in T except Sep(C), i.e.,
A(C) := Ugrev(re,)-v(1e)C" — Sep(C). The separa-
tor Sep(C) separates A(C') and D(C) in G : there is no
edge with one endpoint in A(C') and the other in D(C').

* Construction of a clique tree for a connected chordal
graph can be done in time O(| E(G)|).

We use G [T¢] for the subgraph induced by the vertices that
belong to cliques in T¢ i.e., G [T¢] :== G [UC’eV(Tc)C/]-

We also define the following subgraph of G [T¢]: Let G [T¢]
be G [T¢] with the edges within the separator set Sep(C')

removed, i.e., G [Tc] := G [Te] — E(G[Sep(C))).

Our Contribution

The main contribution of our work is summarized in Theo-
rem 3 and in Algorithm 1, which generates a uniformly ran-
dom acyclic orientation for the given chordal graph. In other
words, each orientation is generated with probability 1/|€],
where (2 is the set of all acyclic orientations of the graph.
The proof of Theorem 3 relies on the following two lemmas
(their proofs, as well as the full proof of the theorem, are
available upon request, and will be included in the author’s
thesis).

Lemma 1. Let C be a clique in the rooted clique tree T and
let C1,Cs,...,Cyq be its children cliques. The edge sets of

the graphs G [T¢,],i = 1,...,d, are mutually disjoint.

Lemma 2. Let G be a connected chordal graph and let T be
a rooted clique tree of G. For a clique C'in T and an acyclic
orientation o over C, let AO (T¢, o) be the set of acyclic
orientations on G [T¢] that are consistent with o. For any C
and any two acyclic orientations o1 and o5 over C, we have

|AO (Tc, 01)| = [AO (Tg, 02)] -

In order to make the running times of our algorithms more
readable, we assume that each arithmetic operation takes
a constant time. This is, of course, a bit optimistic, since
the ultimate number of orientations can be as high as 2™
for a graph with m edges, and, therefore, the true running
time of each arithmetic operation adds a factor of about
m polylog(m). We use O() notation to indicate that this fac-
tor is omitted from our running time estimate.

Theorem 3. Let G be a connected chordal graph. The
number of its acyclic orientations can be calculated in
O(IV(G)]) + O(|E(G)|) time.

Proof sketch. Let T be a clique tree of G rooted at a clique
C,. For a clique C in T, we define AO (T¢) as the number
of acyclic orientations of G [T¢] under the assumption that
the orientation of the edges of G[Sep(C)] has been fixed.
Then, AO (T¢,) computes the overall number of acyclic
orientations of G, since Sep (C,) = (). We show how to

compute AO (T¢) by dynamic programming over the clique
tree:
]!

AO(Tc) = [Sep(C[! H AO(Tc,), 1
Cd

i=1

where C1,...,Cy are the children cliques of C' in T' (and
d = 0if C'is aleaf of T"). Let 0gcp(c) be the given orienta-
tion of G[Sep(C)], we extend it to an acyclic orientation o¢

over C' by picking an orientation from the % candi-

dates. The calculation is obviously correct when C'is a leaf.
When C'is a non-leaf, we fix an arbitrary o¢ and let ogep(c,)
be the orientation restricted to G [Sep (C;)], and we use A;
to denote the set of acyclic orientations of G [T;,] consis-
tent with ogep(c,)- By Lemma 1, we can prove that there is a
bijection between AO (T¢,0¢) and Ay X -+ X Ay.Then,

13062

Algorithm 1: Sample acyclic orientations uniformly at ran-
dom

1: Construct a clique tree of the input graph and randomly
pick a clique C, as the root. Choose a uniformly random
ordering of the vertices in C..

2: Let C be a current clique that we are processing in a
depth-first search manner starting with C,.. Pick a uni-
formly random ordering of C' that is consistent with
G[Sep(C)] by choosing a random ordering 7 of C' and
replacing the relative order of Sep(C') in by the given
ordering.

3: Output the oriented graph.

by the inductive hypothesis, the correct calculation of
|AO (Tci) yields that HC.{l AO (Tci) = ‘AO (Tc, Uc)|,
and by Lemma 2 we know that |AO (T, o0¢)| does not
depend on the specific orientation of o¢, and there are

% possible o¢’s, yielding the expression 1.

The construction of T costs O(|V(G)|), and each
clique C' of T is processed exactly once and it costs
O (deg;(C) + 1). Hence the running time is O(|V (G)]) +
O(E(G))). 0

The proof of Theorem 3 naturally yields a uniform sam-
pler of acyclic orientations (see Algorithm 1), which runs in
time O(|E(G)|) for any input chordal graph G.

Future Plans

We view this work as a first step in the direction of count-
ing and sampling different types of graph orientations on
chordal graphs, such as bipolar orientations, sink-free orien-
tations, and strong orientations.

References

Ganian, R.; Hamm, T.; and Talvitie, T. 2020. An Efficient
Algorithm for Counting Markov Equivalent DAGs. In AAAI,
10136-10143.

Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Zhang,
K. 2019. Counting and sampling from Markov equivalent
DAGs using clique trees. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, 3664-3671.

Naor, J.; Naor, M.; and Schiffer, A. A. 1989. Fast parallel
algorithms for chordal graphs. STAM Journal on Computing,
18(2): 327-349.

Stanley, R. P. 1973. Acyclic orientations of graphs. Discrete
Mathematics, 5(2): 171-178.

Talvitie, T.; and Koivisto, M. 2019. Counting and sam-
pling Markov equivalent directed acyclic graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 7984-7991.

Wienobst, M.; Bannach, M.; and Liskiewicz, M.
2020. Polynomial-Time Algorithms for Counting and

Sampling Markov Equivalent DAGs. arXiv preprint
arXiv:2012.09679.

