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Abstract
Existing research in the field of automated negotiation con-
siders a negotiation architecture in which some of the nego-
tiation components are designed separately by reinforcement
learning (RL), but comprehensive negotiation strategy design
has not been achieved. In this study, we formulated an RL
model based on a Markov decision process (MDP) for bi-
lateral multi-issue negotiations. We propose a versatile ne-
gotiating agent that can effectively learn various negotiation
strategies and domains through comprehensive strategies us-
ing deep RL. We show that the proposed method can achieve
the same or better utility than existing negotiation agents.

Introduction
Negotiation has always been an important element in es-
tablishing cooperation and collaboration in multi-agent sys-
tems. In the field of automated negotiation, the topic of nego-
tiation strategies is being actively studied, and various strate-
gies are being discussed in competitions such as Automated
Negotiating Agents Competition (ANAC) 1. Recently, agent
strategies using reinforcement learning (RL) have attracted
much attention because they can be adapted to various sce-
narios and opponents (Bakker et al. 2019; Razeghi, Yavus,
and Aydoğan 2020). However, the existing studies consid-
ered a negotiation architecture in which some of the ne-
gotiation components, such as bidding, opponent modeling,
and acceptance, are designed separately. It therefore remains
an open and interesting challenge to identify approaches
that use RL to design comprehensive negotiation strategies
without heuristic negotiation components that rely on expert
knowledge and experiments. In this study, we propose a ver-
satile negotiating agent strategy (VeNAS) that comprehen-
sively considers the key components of the negotiation strat-
egy. We demonstrate that the proposed method can achieve
comparable or higher utility than the existing baseline nego-
tiation agents based on heuristic strategies, including cham-
pions of previous competitions.

VeNAS: Versatile Negotiating Agent Strategy
We assume a bilateral multi-issue negotiation in which two
agents negotiate a domain D. A negotiation domain D de-
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Figure 1: VeNAS architecture. The top box is the environ-
ment and the bottom box is the body of the VeNAS model.

fines a set of all possible outcomes Ω that can be proposed
during the negotiation. Every agent has a unique preference
profile that represents its own preferences for the outcome
ω ∈ Ω, and they are not shared with other agents. The utility
of an outcome is defined by a utility function U(·), which is
normalized to the range [0, 1]. The interaction between ne-
gotiating agents is regulated by a negotiation protocol. Here,
we consider the alternating offers protocol (AOP). A negoti-
ation session has the timeline t ∈ [0, T ], where T is a dead-
line. The outcome proposed in the negotiation is called a bid,
and the bid at time t is denoted as ωt.

VeNAS Architecture Figure 1 illustrates the proposed
Versatile Negotiating Agent Strategy (VeNAS) architecture.
The environment includes the history of exchanging bids be-
tween the agent and the opponent and their own utility func-
tions. The opponent agent has the opponent’s utility function
and strategy, but they are not included as input, reward, or
body in the learning architecture of VeNAS because they are
unknown information in negotiations. Compared with a few
existing studies ((Bagga et al. 2020), etc.), the action of the
VeNAS architecture covers all negotiation actions, not just
what to offer. Its input is the bid, not the utility of the bid,
and output is the negotiation action, including the offer and
its bid and accept.

Markov Decision Process for Negotiation To achieve
VeNAS, it is necessary to formulate a Markov decision pro-
cess for bilateral multi-issue negotiations. A finite MDP is
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Laptop (S, Lo) It.vsCy. (M, Hi) IS BT Ac. (M, Lo) Grocery (L, Lo) thompson (L, Hi)

Bas. VeN. DRB. Bas. VeN. DRB. Bas. VeN. DRB. Bas. VeN. DRB. Bas. VeN. DRB.

Boulware 0.841 1.000 1.000 0.487 1.000 0.904 0.853 1.000 0.963 0.669 1.000 0.960 0.431 0.985 0.940
Linear 0.924 1.000 1.000 0.660 1.000 0.904 0.901 0.993 0.940 0.838 1.000 0.960 0.645 0.870 0.913
Conceder 1.000 1.000 1.000 0.852 0.904 0.904 0.951 0.993 0.963 0.977 1.000 0.925 0.824 0.942 0.915
TitForTat1 0.910 1.000 1.000 0.615 1.000 0.760 0.697 0.940 0.940 0.840 1.000 0.960 0.801 0.980 0.940
TitForTat2 0.889 1.000 1.000 0.556 1.000 0.808 0.758 0.948 0.940 0.900 1.000 0.960 0.822 1.000 0.940
AgentK 0.705 0.863 0.874 0.308 0.292 0.550 0.859 0.725 0.853 0.588 0.536 0.812 0.257 0.224 0.495
HardHeaded 0.760 1.000 1.000 0.160 0.355 0.353 0.729 0.873 0.873 0.536 0.628 0.686 0.179 0.153 0.323
Atlas3 0.911 1.000 1.000 0.602 0.709 0.905 0.916 0.937 0.964 0.809 0.958 0.960 0.615 0.716 0.940
AgentGG 0.836 0.851 0.852 0.351 0.313 0.395 0.743 0.875 0.846 0.618 0.621 0.690 0.399 0.409 0.462

Table 1: Utility for each domain and opponent. Laptop (S, Lo) means that the domain name is Laptop, the domain size is small,
and the opposition is low. Bas. is baseline, VeN. is VeNAS, and DRB. is DRBOA. Bold entries indicate the highest utility in
each negotiation setting.

provided asM = 〈S,A,R, T 〉, where S is the state space,
A is the action space, R is the set of rewards, and T is the
transition function. We define an AOP using a finite MDP as
follows: Set of state st ∈ S: The agent’s offer ωt, the op-
ponent’s offer ω′

t, the accept signal η′t, and the normalized
time t/T . Set of action at ∈ A: The agent’s selected of-
fer ωt and accept signal ηt. Reward function r(s, a): When
the agent accepts, r({..., ω′

t}, ηt+1) = U(ω′
t) is rewarded.

When the opponent accepts r({..., ωt, η
′
t+1}, ωt) = U(ωt)

is rewarded. Penalty K is given when the negotiation ends
without reaching an agreement. Otherwise, the reward is 0.

Experiments and Evaluations
The negotiation deadline T was set to 40 rounds, and the ne-
gotiation ends when both agents have each acted 40 times.
To demonstrate adaptability of VeNAS to various domains
and opponents, we used five domains and nine agents. Con-
sidering the size of the outcome space |Ω| and the opposi-
tion that represents the difficulty of reaching a better agree-
ment, five domains were selected: Laptop, ItexvsCypress,
IS BT Acquisition, Grocery, and thompson. We used nine
negotiating agents: three time-dependent (Boulware, Linear,
and Conceder), two behavior-dependent (TitForTat1 and Tit-
ForTat2), and four past ANAC champions (AgentK, Hard-
Headed, Atlas3, and AgentGG). These negotiation domains
and strategies were included in the negotiation platform GE-
NIUS2. We used double deep Q-learning (DDQN) to the
evaluate of our architecture. The training period was 2000
episodes, and we also set a penalty of K = −1 for failure
to reach an agreement. To stabilize the learning, we trained
with 300 different initial values. The performance of the
agents was scored by their obtained utility and evaluated
based on the highest utility among the 300 agents. For com-
parison, we used the baseline, which was the average score
of the same nine agents used for training negotiated with
eight other agents besides themselves, and DRBOA, which
is RLBOA-agent (Bakker et al. 2019) trained by DDQN.

Experimental Results It is clear from Table 1 that VeNAS
is able to achieve the same or better utility than the baseline,

2http://ii.tudelft.nl/genius/

which indicates that the policy obtained by RL is more adap-
tive to the environment than the heuristic strategy. In particu-
lar, VeNAS can adapt to various negotiation strategies with-
out designing an effective strategy that considers the oppo-
nent’s strategies and domains. In some cases, VeNAS could
not obtain a higher utility than the baseline, where the size
was large and the opposition was high, such as in the thomp-
son domain. This is owing to the fact that as the domain size
increases, the size of the state space and action space of Ve-
NAS increases. VeNAS also could not obtain a higher utility
than DRBOA for competition champions. This may be be-
cause in DRBOA, unlike VeNAS, the size of the state and
action space remains constant even when the domain size
increases, taking into account the utility function.

Conclusion and Future Work
In this study, we propose a versatile negotiating agent strat-
egy (VeNAS) via deep RL. Our model comprehensively pro-
cessed the opponent’s offer to determine its own next action,
such as offering bids or accepting them. We formulated the
bilateral multi-issue negotiation as MDP to apply RL. We
demonstrated that VeNAS can achieve comparable or higher
utility than existing baseline negotiation agents, including
champions of previous competitions. One possible direction
for future research is to improve our learning agent model to
obtain an effective negotiation strategy, by reducing the state
and action spaces.

References
Bagga, P.; Paoletti, N.; Alrayes, B.; and Stathis, K. 2020.
A Deep Reinforcement Learning Approach to Concurrent
Bilateral Negotiation. In IJCAI, 297–303.
Bakker, J.; Hammond, A.; Bloembergen, D.; and Baarslag,
T. 2019. RLBOA: A Modular Reinforcement Learning
Framework for Autonomous Negotiating Agents. In AA-
MAS, 260–268.
Razeghi, Y.; Yavus, C. O. B.; and Aydoğan, R. 2020. Deep
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