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Abstract 
Description logic ontologies serve to model classifications and 
structural relationships, and to represent and reason about domain 
knowledge. Modeling the basic classification of abstract algebraic 
structures as an ontology demonstrates the difficulties presented 
by their logical semantics and sheds light on the limitations to ac-
curately model further topics in algebra and related mathematical 
domains. 

Introduction1 
The Web Ontology Language (OWL) 2 DL is the fragment 
of OWL 2 corresponding to the class of description logics 
(DLs), which are decidable fragments of first order logic, 
limited to only unary and binary predicates. Thus, an ontol-
ogy serves to model a domain of interest by object classes 
and binary relationships between objects. Furthermore, a 
reasoner is capable of interpreting given axioms to classify 
individuals and answer queries within the domain (Baader 
et al. 2017). This last capability is particularly interesting to 
the mathematical domain of abstract algebra. 
 Mathematical concepts are sparse in the literature of on-
tologies. Only one other project was found categorizing 
mathematical vocabulary, but not implementing the con-
cepts themselves (Nevzorova et al. 2014). This project in-
stead intends to model the concepts and definitions of the 
algebraic domain, using the 𝒮ℋℐ𝒬 DL profile, meaning it 
includes transitive roles (𝒮) for relations like equality, role 
hierarchies (ℋ) for structure classification, role inverses (ℐ) 
and qualified number restrictions (𝒬) for various properties.  
 Abstract algebra is a field of pure mathematics that serves 
to classify operated sets into various structure types with 
similar properties. For example, the familiar set of integers, 
operated by the standard addition and multiplication, is the 
prototype of the “commutative ring” structure. Any other set 
also classified as a commutative ring will also satisfy the 
same (or analogous) theorems that the integers satisfy. An 
ontology of this domain, in junction with the reasoner capa-
bilities, could model and decide the classification of any 
proposed set and infer the theoretic implications that follow 
therefrom, creating a knowledge base for algebra that can be 
integrated with and applied to other mathematical domains 
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and their practical purposes as well. An example query 
could be whether elements of Structure A (which may serve 
a specific applied purpose) satisfy the Zero Product property 
(that for elements a,b, if ab=0 then either a=0 or b=0), 
which is used often to solve real-valued polynomials. The 
reasoner would classify Structure A, and if it is a “domain” 
or “field”, it satisfies the property such that a proposed equa-
tion within the structure can be solved thereby. 
 However, in the basic classification modeled using OWL 
2 ontology editor, Protégé 5.5.0, certain algebraic properties 
presented difficulty in accurately and efficiently modeling 
via the semantics of the language. This could prove prob-
lematic in the modeling and application of algebraic do-
mains and the greater mathematical paradigm within the 
constraints of description logics. 

Primer on Algebra 
A brief overview of the ontology domain is necessary to dis-
cuss the issues further. Structures consist of a set of ele-
ments, often but not necessarily numbers, and either one or 
two closed operators, that is, the operators cannot generate 
a new element outside the set. Operators need not be the 
standard addition and multiplication. The first property con-
sidered in classification is commutativity: that for any oper-
ator * and two elements, a and b, the equality a*b=b*a 
holds. Next is associativity. Similar to commutativity, for 
any operator * and three elements a, b and c, the equality 
a*(b*c)=(a*b)*c holds, where parentheses denote order of 
operation. An operator’s identity is the unique element 
which, when operated with another element, generates that 
latter element; in variable notation, some identity e such that 
e*a=a*e=a for all elements a. Another property is inverti-
bility, that an element has some unique element for which 
the operated product of the two equals the identity; in vari-
able, for some element u, an inverse v such that u*v=v*u=e. 
For structures with two operators, which are labeled one ad-
ditive and one multiplicative, the two must satisfy the dis-
tributive property: for two operators * (multiplicative) and 
& (additive) and elements a, b and c, the equality 
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a*(b&c)=(a*b)&(a*c) holds (Cuoco and Rotman 2013). 
There are a total of four properties considered in single op-
erated structures and nine in double operated ones, by which 
the satisfaction or not of properties classifies the structure. 
 As an example, the integers mentioned above classify as 
a commutative ring, satisfying all but one of the nine prop-
erties: multiplicative invertibility. Commutativity, associa-
tivity and distributivity are confirmed by examples. The ad-
ditive identity is 0, to which any integer can add via its in-
verse, the negative. The multiplicative identity is 1. Not 
every integer is capable of multiplying to 1 (in fact, only 1 
and its negative are) so that property is not satisfied. 

The Algebra Ontology 
Modeled in this ontology are several prevalent algebraic 
structures and the classifying properties to define each. The 
design of the ontology is intended to determine these prop-
erties solely from operation table(s). However, in combina-
tion with the ubiquity of infinite sets (like the integers), the 
Open World Assumption (OWA) of the logical system does 
not allow conclusive reasoning from operation tables. Thus, 
in many cases, unless declared, the reasoner cannot classify 
a structure to be commutative, for example, but, having de-
fined commutativity, will recognize an inconsistency if a 
non-commutative structure is declared commutative. In the 
case of these properties, which are defined by an operator 
over every element, this is circumventable by assuming a 
structure to be commutative unless proven otherwise. 
 The ontology’s Expression class contains individuals 
with names like a*b, declared to be operated by the operator 
*, “paired” with elements a and b (order preserving), and 
evaluating to some single element. Properties defined in 
terms of related individual elements, the identity and in-
verse, are defined with the help of these expressions and in-
verse (ℐ) constructs. The modeled identity definition is lim-
ited by the OWA. A subclass of the Element class, it is de-
fined with a maximum cardinality restriction on a super-
property “relates” governing pairings and evaluation. An 
expression that pairs the same element on both sides of the 
operator and evaluates to that very element (a*a=a) relates 
to the maximum cardinality of 1 element (necessitating 𝒬 
constructs), an identity. However, the reasoner, under the 
OWA, cannot confirm that an expression does not relate 
more than is declared, and therefore cannot conclude an el-
ement to be an identity. Unlike the previous OWA issue, 
there are too many elements to assume all to be identities 
and sort through inconsistencies proving them otherwise. 
Thus, a user must themself declare the identity element and 
the reasoner can merely check consistency. 
 Another prevalent issue, in some cases avoidable and oth-
ers potentially less so, appeared in the logical semantics. In 
the algebra definitions presented above, it was necessary to 

use variables to define many of the properties, something 
OWL cannot do because the additional expressivity would 
lead to undecidability. Translating into the logical capabili-
ties of Protégé, the definitions are wanting of a relative 
clause type expression. For example, an attempt at commu-
tativity used an object property “commutes” to link two ex-
pressions that should commute, a*b and b*a. An expression 
is defined to be commutative if it equals the expression 
which it commutes. This italic clause is incompatible with 
the logical semantics, but an alternative solution was identi-
fied using more declarations. Some concepts might not have 
suitable alternatives, needing excessive amounts of new 
declarations or failing altogether to accurately model. 
 The seemingly most difficult concept to model is associ-
ativity, presently left undefined. The compound expressions 
necessary are compatible with the formulation above but 
quickly expand the number of declarations. Just as commu-
tativity, involving two variables, raised issues with both the 
OWA and the semantics, associativity does so on a larger 
scale, involving three variables. Despite this difficulty, as-
sociativity seems the least important to model as it is a con-
dition of all the modeled common structures. 

Conclusion 
The basic classification of algebraic structure is almost com-
pletely modeled as an OWL DL ontology using the Protégé 
editor, but various properties demonstrate limitations with 
OWL in discussing algebraic concepts. While solutions 
were found for many cases, some may be possible but not 
conceived and some may even be impossible. Nevertheless, 
the ontology can classify declared structures and decide 
whether they satisfy properties for use by algebraic applica-
tions therein. However, for some properties and concepts, 
the foregoing issues could pose a significant challenge in the 
modeling of algebra and the greater understanding of math-
ematics in ontologies and knowledge representation.  
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