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Abstract

Conditional neural process (CNP) has been extensively ap-
plied into data analyzing tasks due to its excellent ability to
make accurate predictions for incomplete data points. How-
ever, in literature there are only few works that studied the
CNP in recommendation systems. In this work, we propose
CCFP, which is a collaborative filtering method that differs
from other CF models by incorporating CNP into encoder-
decoder architecture. By analyzing the complete user-item in-
teraction data, our model fits a global representation that can
better representing the features of users and items. CCFP can
significantly improve the recommendation performance com-
pared to baselines by predicting items for the target users with
their incomplete observation data.

Introduction
The rapid development of the Internet has aroused massive
user-item interaction data, making recommender systems
the indispensable tool for information retrieval. As one of
the most applied method in recommender systems, Collab-
orative Filtering (CF) has become a research hotspot in re-
cent years. Among them, many works use variational auto-
encoder (VAE) as the base model due to its strong learn-
ing ability for users/items. However, as a classical genera-
tive method, directly applying VAE into recommender sys-
tems faces several notable obstacles. For example, the con-
straint of prior distribution limits the flexibility of encoders
and weakens the recommendation performance.

In this work, we incorporate conditional neural process
(CNP) in designing collaborative filtering methods, which
significantly improves the recommendation performance
while retaining the encoder-decode architecture’s efficiency.

Conditional neural process (Garnelo et al. 2018) aims to
make accurate predictions for incomplete target data points
after observing the complete training data points. CNP can
flexibly obtain the distribution parameters of label y by an-
alyzing the input data x rather than directly obtaining the
label y.

In our proposed CCFP model, we first train a global rep-
resentation by analyzing the user-item interaction data in
training data and then use this representation to represent the
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Figure 1: Overall architecture of CCFP

features of overall data. Given the partial user-item interac-
tion data, we combine them with the global representations
to predict the recommendations for each user. Experiments
conducted on two real-world datasets showed that our model
outperforms strong baselines.

Method
We use uO ∈ {u1, u2, · · · , um} to denote the observed
users, uT ∈ {um+1, um+2, · · · , um+n} to denote the tar-
get users and i ∈ {I1, I2, · · · , Ik} to denote items. Click
matrix XO ∈ Nm×k and XT ∈ Nn×k are used to denote the
user-item interaction matrices of uO and uT , respectively.
The lower case xuO and xuT are vectors with the number of
clicks for each item from u, respectively.
Model. Figure 1 shows the overall architecture of our pro-
posed CCFP model. In general, there are a large number
of items in a recommendation system, which makes the di-
mension of the click matrix very high. The first step of our
model is to transform high-dimensional input data into low-
dimensional latent factors by fully-connected layers. We use
zuO (resp. zuT ) to denote the latent representations of xuO
(resp. xuT ) that contains the features of the input data. The
feature extraction method is similar to the encoder in VAE:

µ, σ = fe(x)

z = µ+ σ · ε, ε ∼ N (0, I)
(1)

In the training procedure of our model, we use obtained zuO
to get the global representation r via neural network fθ. In
recommendation tasks, observation data usually account for
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a large proportion. Therefore, r can represent the features of
the overall data to a great extent. We then concatenate zuO
and r and generate the reconstructed vector x̂uO via network
gφ. Specifically, we use the following architecture:

ru = fθ(z
u
O)

r = r1 ⊕ r2 ⊕ · · · ⊕ rm

vu = concat(zuO, r)

x̂uO = gφ(v
u)

(2)

In this way, we can get the reconstructed data X̂O. We expect
to train X̂O that is as close as possible to the originalXO and
use the trained model to recommend items for users in the
test set.
Training. Our model is trained by reducing the distance be-
tween the original data and the reconstructed data. The loss
function is defined as follows:

Lloss =−
1

m
[
m∑
u=1

xuO · log(x̂uO)

+ (1− xuO) · log(1− x̂uO)]
(3)

Recommendation. Given a user’s click history xuT , our
model generates its latent representation zuT and concate-
nates it with r to get vector vu, then gφ will transform vu

into scores of each item to this user. In a typical top-K rec-
ommendation system, we take the top-K value as the predic-
tion items for this user.

Results and Conclusion
Datasets. We conduct our experiment on two real-world
datasets: lastfm and Movielens-1M. The basic statistics of
two datasets are summarized in Table 1.

Dataset # users # items # rating density
lastfm 1,693 16,410 82,989 0.299%
ML-1M 6,940 3,952 1,000,209 3.65%

Table 1: Descriptive statistics of two datasets.

Baselines. We compare the performance of our proposed
CCFP with the following baselines, both traditionally and
state-of-the-art in recommendation systems: WMF (Hu, Ko-
ren, and Volinsky 2008), SLIM (Ning and Karypis 2011),
NeuMF (He et al. 2017), NGCF (Wang et al. 2019), and
Mult-VAE (Liang et al. 2018).
Experimental settings. Each dataset is split into training
(80%), validation (10%), and test (10%) sets. The learning
rate is 0.001 and we train the model with the Adam opti-
mizer (Kingma and Ba 2014). The evaluation metrics are
NDCG@20, NDCG@100, and Recall@50.
Results. Table 2 summarizes the performance compar-
isons between our method and baseline approaches, which
demonstrates that our model achieves the best performance
on both datasets and three metrics. Specifically, Mult-VAE

Dataset lastfm ML-1M
Metric N20 N100 R50 N20 N100 R50

WMF 0.197 0.268 0.313 0.268 0.355 0.411
SLIM 0.203 0.276 0.315 0.285 0.364 0.429
NeuMF 0.207 0.280 0.324 0.273 0.362 0.426
NGCF 0.217 0.296 0.334 0.298 0.381 0.439
Mult-VAE 0.219 0.295 0.339 0.299 0.395 0.452

CCFP 0.222 0.304 0.346 0.303 0.395 0.454

Table 2: Performance comparison on three datasets.

outperforms other baselines which demonstrates the effec-
tiveness of VAE’s encoder-decoder architecture. In compar-
ison to VAE-based recommendation methods, our model is
more effective to deal with incomplete data points and uti-
lize the information in observation data to generate more ex-
pressive user representations. As a result, we conclude that
by incorporating CNP into collaborative filtering, the perfor-
mance of recommendation can be improved.
Conclusion. We have introduced Conditional Neural Pro-
cess into encoder-decoder based recommendation frame-
work, which enables us to make more effective use of the
information in the observation data to serve the target users.
Compared to prior VAE-based CF models, we replace prior
distribution based on empirical assumptions by the statistical
information in the observation data and our model can avoid
“posterior collapse” issue to some extent. Extensive exper-
iments showed that our model outperforms several strong
baselines.
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