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Abstract

In this paper, we propose a novel problem, named ratio-
nal (α, β)-core detection in attribute bipartite graphs (RCD-
ABG), which retrieves the connected (α, β)-core with the
largest rational score. A basic greedy framework with an op-
timized strategy is developed and extensive experiments are
conducted to evaluate the performance of the techniques.

Introduction
The bipartite graph, composed of two disjoint vertex sets and
edges connecting vertices from different sets, has numerous
applications like fraudsters detection (Chen et al. 2021) and
personalized recommendation (Zhu et al. 2020). As a fun-
damental problem investigated in bipartite graph analysis,
community detection (CD) aims to find all or top-k commu-
nities by identifying specific models, e.g., (α, β)-core (Chen
et al. 2021) and biclique (Lyu et al. 2020). In reality, the re-
lationships between different entities often have properties,
which can be modeled as attribute bipartite graphs.

Example 1. Figure 1 shows a user-movie network, where
each vertex in U (resp. V ) denotes a user (resp. movie) and
each edge associated with a number indicates that the user
has a rating for a movie. Notice, the scoring mechanism
adopts a five-point system, so there are five scores. Sup-
pose α=2 and β=2 here, then the subgraph induced by set
{u2, . . . , u8, v2, . . . , v8} is a (2, 2)-core, where each vertex
u ∈ U (resp. v ∈ V ) has no less than α=2 (resp. β=2)
neighbors. For a movie discussion group, it will have a more
harmonious atmosphere if users have a high consistency of
preference, i.e., rating the same score for the same movie.
Besides, dense groups are more conducive to frequent com-
munication. However, in this (2, 2)-core, many users have
distinct scoring schemes for the same movie (e.g., u6, u7
and u8 gave three different scores to v7) and the community
size is too large to facilitate communication between users.

Motivated by these, in this paper, we present a novel prob-
lem, namely Rational (α, β)-Core Detection on Attribute
Bipartite Graphs (RCD-ABG), which retrieves the rational
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Figure 1: User-movie network with five-point score system

community with cohesiveness (i.e., (α, β)-core) and ratio-
nality (i.e., rational score function combining the preference
consistency and the community density).

Preliminaries
We consider an attribute bipartite graphG = (U,L,E,A) as
an undirected graph without multiple edges and self-loops,
where U (resp. L) is the vertex set in the upper (resp. lower)
layer, U ∩ L = ∅, E is the edge set, E ⊆ U × L, and
A = {a1, a2, ..., at} is the attribute set. Each edge e ∈ E is
associated with an attribute a(e) ∈ A. We use m to denote
the number of edges in G. Given an attribute bipartite graph
G, a subgraph S = (US , LS , ES ,A) is an induced subgraph
of G, if US ⊆ U , LS ⊆ L and ES = E ∩ (US × LS). For a
vertex u ∈ US ∪VS , the number of u’s neighbors is denoted
by dS(u), i.e., the number of the adjacent vertices of u.
Definition 1 ((α, β)-core). Given a bipartite graph G, a
subgraph S is the (α, β)-core of G, denoted by Cα,β , if it
satisfies: 1) degree constraint, i.e., dS(u) ≥ α for each ver-
tex u ∈ US and dS(v) ≥ β for each vertex v ∈ LS; 2) S is
maximal, i.e., any supergraph S′ ⊃ S is not a (α, β)-core.

In the following, we first introduce the consensus score of
vertex and community. Then we formally define the rational
score function. Note that, we only consider the consensus
score of the vertex in the lower layer (e.g., movie layer).
Definition 2 (Consensus score). Given an attribute bipar-
tite graph G, the consensus score of each vertex v ∈ L,
is denoted by xG(v)

dG(v) , where xG(v) is the maximum num-
ber of its adjacent edges in G with the same attribute.
For a subgraph S of G, its consensus score is defined as
(
∑
v∈LS

xS(v)
dS(v) )/|LS |, where |LS | is the number of vertices

in lower layer of S.
To judge a community, our rational score function com-

bines the consensus score and the density constraint, which
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is f(S) = λ

∑
v∈LS

xS(v)

dS(v)

|LS | +(1−λ) |ES |
|US ||LS | , where λ is a pa-

rameter to make the trade-off between the consensus score
and the community size. Based on this rational score func-
tion, we give the definition of our problem.
Problem Statement. Given an attribute bipartite graph G
and two positive integers α and β, we aim to develop ef-
ficient algorithms to find the rational (α, β)-core, which is
the subgraph S of G meeting the following three criteria:
i) Connectivity: S is connected; ii) Cohesiveness: S is a
(α, β)-core; iii) Rationality: S has the largest rational score
f(S) among subgraphs satisfying the above criteria.

Solution
Intuitively, to find the rational (α, β)-core, we can iteratively
delete the vertex in the lower layer whose deletion will in-
crease the score directly. Based on this, we define the ra-
tional marginal score of each vertex and propose our basic
greedy framework as follows.
Definition 3 (Rational Marginal Score). Given an attribute
bipartite graph G and a vertex u ∈ L, the rational marginal
score is defined as4G(u) = f(G\{u})− f(G)
Basic Greedy Framework (BGF). The details of BGF are
illustrated as three main steps. Step 1, we obtain the (α, β)-
core of G and store into G. Note that, in the following steps,
we process each connected (α, β)-core of G, iteratively. We
use Gi to denote the current processing (α, β)-core and cal-
culate its corresponding rational score. Step 2, we greedily
peel the vertex v in graph Gi providing the largest marginal
score, i.e., v = argmaxu∈Gi

f(Gi\{u}) − f(Gi). After
removing this vertex, we obtain the (α, β)-core in the re-
maining graph, and we store all the connected (α, β)-core
into G, separately. We continue this process until G = ∅.
Step 3, the connected (α, β)-core with the largest score
is the result. The time complexity of BGF is O(2m +

min( |U |
β ,

|L|
α )|U |m).

An Optimized Strategy (OS). The basic greedy framework
is simple but may severely limit the effectiveness of the algo-
rithm. Removing a vertex may lead other vertices drop from
the community, which are not considered in the marginal
score. Hence, it may cannot reflect the real change of score
especially for abundant removed vertices. To optimize it, we
modify the rational marginal score by removing a vertex
and its neighbors from two layers. Specifically, the marginal
score is adapted as 4′

G(u) = f(G\(H2G(u) ∪ {u})) −
f(G), where H2G(u) is the 2-hop neighbors of u in G that
will be removed due to the deletion of u. The time com-
plexity of OS is O(2m+min( |U |

β ,
|L|
α )(|U |+ |L|)dmaxm),

where dmax is the maximum degree of vertex in G.

Experiments
To our best knowledge, there is no existing work for RCD-
ABG. We implement three algorithms: DBM: the degree-
based method choosing the vertex with the largest degree
in each iteration, BGF: the basic greed framework, OS:
BGF modified by optimized strategy. We employ 2 real-
world bipartite graphs, i.e., HetRec (HR) and BookCross-
ing (BC), whose details can be referred to Grouplens (https:
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Figure 2: Efficiency evaluation by varying α and β

//grouplens.org/datasets/). λ is set as 0.7 because the density
of community will strengthen with the continuous deletion
of vertices, thus we focus on consensus score.

To evaluate the efficiency, we report the response time of
algorithms by varying α and β in Figures 2(a)-2(b). As ob-
served, OS entails the similar time cost as BGF although
OS needs to consider 2-hop neighbors. When α and β in-
crease, the response time decreases for all methods since the
community size decreases. To evaluate the effectiveness, we
report the rational scores of returned communities in Fig-
ures 2(c)-2(d). OS and BFG can find the communities with
higher scores than DBM. The score returned by OS is 0.08
higher than the one by BGF in HR. Note that, the consen-
sus score is a fraction no more than 1, so the improvement
of OS is already significant for the overall score. The score
decreases when α and β increase because of tighter support
constraint.

Future Work
In the future, we plan to investigate the multiple properties
in our problem. We want to assess the performance of our al-
gorithm from the experimental point of view and to propose
some heuristics with the aim of improving the efficiency of
the algorithm. We will conduct more experiments over lager
datasets and different parameters.
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