
Learning to Evolve on Dynamic Graphs
(Student Abstract)

Xintao Xiang1∗, Tiancheng Huang2,3,4∗, Donglin Wang3,4 †

1 Australian National University, Canberra, Australia 2 Zhejiang University, Hangzhou, China
3 Westlake University, Hangzhou, China 4 Westlake Institute for Advanced Study, Hangzhou, China

xintao.xiang@anu.edu.au, {huangtiancheng,wangdonglin}@westlake.edu.cn

Abstract
Representation learning in dynamic graphs is a challenging
problem because the topology of graph and node features
vary at different time. This requires the model to be able
to effectively capture both graph topology information and
temporal information. Most existing works are built on recur-
rent neural networks (RNNs), which are used to exact tempo-
ral information of dynamic graphs, and thus they inherit the
same drawbacks of RNNs. In this paper, we propose Learn-
ing to Evolve on Dynamic Graphs (LEDG) - a novel algo-
rithm that jointly learns graph information and time informa-
tion. Specifically, our approach utilizes gradient-based meta-
learning to learn updating strategies that have better general-
ization ability than RNN on snapshots. It is model-agnostic
and thus can train any message passing based graph neural
network (GNN) on dynamic graphs. To enhance the repre-
sentation power, we disentangle the embeddings into time
embeddings and graph intrinsic embeddings. We conduct ex-
periments on various datasets and down-stream tasks, and the
experimental results validate the effectiveness of our method.

Introduction
Representation learning on graph data has received increas-
ing attention. However, most works focus on the static graph
and ignore the fact that many real-world graphs are time-
dependant. Our work falls into the category of representa-
tion learning on discrete representations of dynamic graphs.
A main line of work in this category is based on RNNs.
Typically, RNN-based methods achieve success, they have
issues: 1) they suffer from same issues of RNNs that they
cannot compress long-range dependencies into hidden states
and they cannot be paralleled (Bahdanau and et al. 2015); 2)
Methods like EvolveGCN (Pareja and et al. 2020) is similar
to model-based meta-learning methods which use RNN to
update the model parameters but recent research have found
that such methods are more likely to overfit and have lim-
ited generalization ability compared to gradient-based meta-
learning methods (Finn and Levine 2018).

In this paper, we argue that: a) the embeddings of dy-
namic graphs are formed by time information and graph in-
trinsic information (graph structure and attributes of nodes),
∗These authors contributed equally.
†Corresponding author.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An illustration of our method. In inner loop, only
GNN and time adapter are updated, while in outer loop, all
the parameters are optimized.

where b) time information continuously changes with time
and gives a prior on prediction targets, and graph intrinsic
information directly contributes to the prediction targets.

We propose a novel algorithm Learning to Evolve on Dy-
namic Graphs (LEDG) as shown in Fig.1. First, we for-
mulize our argument above by explicitly disentangling the
embedding into time embedding and graph intrinsic embed-
ding. The final prediction is performed by the combination
of predictions on time embedding and graph intrinsic em-
bedding. As the relative time between snapshots can be ob-
served, we use a time predictor to predict the time by time
embeddings to make sure that the embddings capture the
time information. Second, we borrow the idea of gradient-
based meta-learning (Finn and et al. 2017) and use episodic
training to learn a model with the best initialization param-
eters that can quickly adapt to future graphs with only a
small number of historical graphs. Our algorithm is model-
agnostic and can be used for any message passing based
GNN even if it is designed for static graphs in nature.

Our main contributions are as follows: (1) We propose a
simple but effective attention-based method to disentangle
the embeddings of dynamic graphs into time embeddings
and graph intrinsic embeddings. (2) We propose a novel al-
gorithm LEDG based on gradient-based meta-learning and
can train any message passing based GNN on dynamic
graphs. We perform detailed experiments and the results in-
dicate that LEDG helps base model get higher performance.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13091



Proposed Method
Problem Definition: In this paper, given a dynamic
graph G={G1,G2, ...,GT }, representation learning on this
graph aims to learn representations Ht of nodes at time
t=t0, t1, ..., T , such that Ht can preserve both time informa-
tion and graph intrinsic information, and thus can be used
for down-stream tasks such as link prediction, edge classifi-
cation, and node classification in future time.
Feature Disentanglement: We assume H=HG+HT , where
HG∈RN×D denotes the graph intrinsic embeddings and
HT∈RN×D denotes the time embeddings. This assumption
is reasonable as the original embeddings come from both
the time and the graph. Given embeddings H, we employ
feature-wise attention to disentangle them into HG and HT .
A time adapter fφ which is a multilayer perceptron (MLP)
is used to get the attention map S∈RN×D by S=σ

(
fφ(H)

)
,

where σ represents Sigmoid function. The time embeddings
HT and graph intrinsic embeddings HG are calculated by:

HG = S�H, andHT = (1− S)�H, (1)
where � denotes Hadamard Product.
Time regression. To restrict HT to best represent the tem-
poral information, we use a time predictor denoted by fϕ
which is an MLP to predict the current time t by Ht

T in this
snapshot. We formulate the loss as:
LT
(
Ht
T ; fθ, fφ, fϕ

)
= smoothL1

(
fϕ(Pool(H

t
T ))− t

)
,

in which smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(2)

is a robust L1 loss that is less sensitive to outliers than L2

loss. Pool denotes graph pooling.
Down-stream tasks. As the final prediction is related to
both the time and the graph, we use two classifiers fψ(1) and
fψ(2) which are two MLPs to calculate the predictions by:

Ỹ = Softmax(fψ(1)(HT ) + fψ(2)(HG)). (3)
Then the final loss can be calculated by cross-entropy loss:
LCE (HT ,HG; fθ, fφ, fψ) = CrossEntropy

(
Ỹ,Y

)
, (4)

where Y represents the ground truths of tasks.
Adapt feature extractor in inner loop. Specifically, for
predicting snapshot at time t, we first initialize parameters
(θ0, φ0) ← (θ, φ) by the current model. Then we use SGD
to update the parameters through w closest snapshots by Eq.
(2). Denote index of snapshot in a time window as i=1, ..., w,
the exact time of the snapshot is then t-w+i. Formally,

(θi, φi)← (θi−1, φi−1)

− ηin
[
∇(θ,φ)

(
LT
(
Ht−w+i
T ; fθi−1 , fφi−1 , fϕ

))]
,

(5)

where ηin is the inner loop learning rate.
Update all parameters in outer loop. In each update step
i of inner loop, we evaluate its performance on our target
snapshot by Eq. (2) and Eq. (4), and formally,

(θ, φ, ψ, ϕ)← (θ, φ, ψ, ϕ)

− ηout∇(θ,φ,ψ,ϕ)

[ w∑
i=1

(
LCE

(
Ht
T ,H

t
G; fθi , fφi , fψ

)
+ λLT

(
Ht
T ; fθi , fφi , fϕ

))]
,

(6)

where ηout denotes the outer loop learning rate and λ is a
hyperparameter that is used to balance the two losses.

Datasets SBM UCI AS
Metrics MAP MRR MAP MRR MAP MRR
GCN .1894 .0136 .0001 .0468 .0019 .1814
GAT .1751 .0128 .0001 .0468 .0200 .1390

GCN-GRU .1898 .0119 .0114 .0985 .0713 .3388
EvolveGCN-H .1947 .0141 .0126 .0899 .1534 .3632
EvolveGCN-O .1989 .0138 .0270 .1379 .1139 .2746

DynGEM .1680 .0139 .0209 .1055 .0529 .1028
dyngraph2vec V1 .0983 .0079 .0044 .0540 .0331 .0698
dyngraph2vec V2 .1593 .0120 .0205 .0713 .0711 .0493

LEDG-GCN .1960 .0147 .0324 .1626 .1932 .4694
LEDG-GAT .1822 .0123 .0261 .1492 .2329 .3835

Table 1: Link prediction results where mean average preci-
sion (MAP) and mean reciprocal rank (MRR) are displayed.

Experiment
Link Prediction: The results of link prediction are dis-
played in Table 1. Note that as our experiment setting in link
prediction is the same as (Pareja and et al. 2020), for some
of the baselines, we use the results reported in (Pareja and
et al. 2020). Generally, GCN and GAT with our method sig-
nificantly outperforms their vanilla versions in all datasets.
Huge improvements are observed in datasets AS and UCI
and LEDG with GCN performs better than all the baselines
significantly, which proves the effectiveness of our method
in improving the performances of base models on dynamic
graphs. The MAP of SBM are similar for all the supervised
methods while our method with GCN is with a bit higher
MRR. We observe that in this task, our method with GCN
outperforms that with GAT. We argue that the reason is that
GAT is more likely to overfit under such setting as general-
izing to future time requires high generalization ability.

Conclusion
We introduce a novel algorithm LEDG which is built on
gradient-based meta-learning algorithm, for training GNNs
on dynamic graphs. The algorithm learns updating strategies
that have better generalization ability than RNNs. The core
principle of our method is to disentangle the embeddings
into time embeddings and graph intrinsic embeddings, and
adapt the model parameters by time regression and down-
stream tasks in a gradient-based meta-learning manner. The
experiments demonstrate the effectiveness of our algorithm
in training GNNs on dynamic graphs.

Acknowledgments
Supported by NSFC General Program (No.62176215).

References
Bahdanau, D.; and et al. 2015. Neural Machine Translation
by Jointly Learning to Align and Translate. In ICLR.
Finn, C.; and et al. 2017. Model-agnostic Meta-learning for
Fast Adaptation of Deep Networks. In ICML.
Finn, C.; and Levine, S. 2018. Deep Representations and
Gradient Descent Can Approximate Any Learning Algo-
rithm. In ICLR.
Pareja, A.; and et al. 2020. EvolveGCN: Evolving Graph
Convolutional Networks for Dynamic Graphs. In AAAI.

13092


