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Abstract

Popular first-order stochastic optimization methods for deep
neural networks (DNNs) are usually either accelerated
schemes (e.g. stochastic gradient descent (SGD) with mo-
mentum) or adaptive step-size methods (e.g. Adam/AdaMax,
AdaBelief). In many contexts, including image classification
with DNNs, adaptive methods tend to generalize poorly com-
pared to SGD, i.e. get stuck in non-robust local minima; how-
ever, SGD typically converges slower. We analyze possible
reasons for this behavior by modeling gradient updates as
vectors of random variables and comparing them to prob-
abilistic bounds to identify ”meaningful” updates. Through
experiments, we observe that only layers close to the output
have ”definitely non-random” update behavior. In the future,
the tools developed here may be useful in rigorously quan-
tifying and analyzing intuitions about why some optimizers
and particular DNN architectures perform better than others.

Introduction
Stochastic optimization is critical to many modern machine
learning methods. Typically, these methods rely on some
variant of stochastic gradient descent, which have certain
useful convergence properties in the convex regime (Nes-
terov 1983). However, these properties do not necessarily
translate into the non-convex regimes frequently encoun-
tered in DNNs and related optimization tasks such as saddle
points, plateaus, and local minima (Dauphin et al. 2014). A
lack of precise understanding of reasons for models failing
to converge toward high accuracy and robustness precludes
the construction of methods that effectively target these is-
sues. Our research studies the fundamentals of how DNNs
behave during training, offering possibly new perspectives
for the high-dimensional, non-convex optimization of DNNs
at the parameter update level.

Background
Many recent advances in DNN optimization come in the
form of functions g(∇θ(ft(θt−1)), h) applied to the esti-
mated gradient ∇θ(ft(θt−1)) at time t with history, h, of

*3335 Woodland Walk, Philadelphia PA 19104; +1 (603)-834-
5923

†These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gradients, updates, parameters, etc. (e.g. SGD with momen-
tum, Adam, AdaBelief, Lookahead) (Qian 1999; Kingma
and Ba 2017; Zhuang et al. 2020; Zhang et al. 2019). These
are rooted in the human intuition of how DNNs learn the
training distributions, and have proven effective. However,
empirical analyses of precisely why these methods work bet-
ter than simple SGD remain sparse. Overall, there has been
relatively little focus on studying the behavior of the gradi-
ents and parameter updates that are at the core of all stochas-
tic optimization methods.

Motivation
We can apply certain, well-studied, and useful probabilistic
results about vectors in general and use them to guide our
intuition about the nature of gradients. For instance, a stan-
dard observation is that for two vectors x, y ∈ Rn drawn
randomly from the n-ball Bn, they are likely to be approxi-
mately orthogonal for high dimensions (Arora 2013)

| cos(Θx ,y)| = O

(√
log(n)

n

)
.

Equivalently, for ε = 1
n :

Pr

(
| cos(θx,y)| >

√
− log(ε)

n

)
< ε.

Thus, if two high-dimensional vectors are not orthogonal,
they likely were not generated randomly and independently.

We believe that intuition-based analysis of the gradient es-
timates are insufficient. We desire a more empirical analysis
of the gradient estimates. Consider the following example:
one might expect if estimated gradients are in the same di-
rection then they likely approximate the true gradient well;
indeed, this is the intuition behind AdaBelief (Zhuang et al.
2020), which demonstrates strong performance across mul-
tiple tasks.

However, it is worth noting that their method compares
the current gradient to an exponential moving average of
past gradients. Although we agree there is strong human in-
tuition behind this concept, we do not think this lends itself
to rigorous analysis in terms of likelihood that gradient es-
timates are approaching the true gradient. While we do not
propose an alternative to AdaBelief, leaving that to future
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work, we attempt to move toward quantifying the behavior
of optimizers at the gradient level in order empirically justify
and explain novel methods like AdaBelief.

Experiments
We observed the gradient estimation behavior of various
DNN architectures using SGD during training on the stan-
dard CIFAR-10 image classification task as a proof of con-
cept for our general idea (Krizhevsky 2009). We consider
the layer-specific gradient updates. In particular, we look
at the following, for a given layer l, the cosine similarity
cos (∇θ,l(ft(θt−1)),∇θ,l(ft−1(θt−2))) . We also then de-
fine non-random as having a large cosine similarity value
with the previous update, where |θl| should be under-
stood as the number of parameters in a given layer of pa-
rameters θl —cos(∇θ,l(ft(θt−1)),∇θ,l(ft−1(θt−2)))| >√
− log

(
1
θl

)
|θl|.

In particular, we consider ResNets (18, 34, 50) using SGD
and SGD with momentum (He et al. 2015) with batch size
128. We use consistent parameters (lr = 0.05, no learning
rate scheduler) and repeat each experiment three times with
random initialization weights for replicability purposes.

Results and Observations
In the case of SGD with no momentum, we observe strange
behavior dependent upon layer depth across all ResNets
tested, which has never been noted previously (Figure 1).

In particular, we observe that only certain layers, namely
those close to the output layer or skip connections, undergo
highly non-random updates. This suggests non-random up-
dates occur primarily near the output layer.

Although a cosine similarity value being below the thresh-
old does not necessarily denote the absence of a ”meaning-
ful” update, only certain layers exhibit behavior consistent
with randomness while others do not.

This is especially surprising considering the presence of
skip connections in ResNets, which were originally de-
signed to combat the vanishing gradient problem, and should
intuitively ensure meaningful updates even in layers distant
from the output (Pascanu, Mikolov, and Bengio 2012).

Even with a strong momentum term of 0.9, many hidden
layers distant from the output layer appeared to have, on av-
erage, cosine similarity values near zero. This is unexpected,
since a momentum term should intuitively push cosine sim-
ilarities toward positive values.

Conclusion
Layers in ResNets near the output had highly non-random
parameter updates during training. This implies that mean-
ingful updates occur in the layers closer to the output during
gradient-based optimization. It is unclear what causes this
discrepancy between layers close to the output and layers
distant from the output, even in DNNs with skip connections
(e.g. backpropagation of error, sampling issues, batch sizes,
etc.), and we encourage further research into these promis-
ing avenues toward rigorous understanding of DNN training.

Figure 1: Cosine similarities between gradient updates,
smoothed for visualization purposes.
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