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Abstract
Influence blocking maximization (IBM) is crucial in many
critical real-world problems such as rumors prevention and
epidemic containment. The existing work suffers from: (1)
concentrating on uniform costs at the individual level, (2)
mostly utilizing greedy approaches to approximate optimiza-
tion, (3) lacking a proper graph representation for influ-
ence estimates. To address these issues, this research in-
troduces a neural network model dubbed Neural Influence
Blocking (NIB) for improved approximation and enhanced
influence blocking effectiveness. The code is available at
https://github.com/oates9895/NIB.

Introduction
As transportation and communication technology bring peo-
ple closer together and shrink the world, the influence on
graphs grows more complicated, attracting increasing atten-
tion from researchers and practitioners. Influence blocking
maximization (IBM) (He et al. 2012), one of the most stud-
ied topics, aims to discover effective ways for preventing
harmful influence from propagating throughout the network.

One of the most effective ways to stop the spread is node
removal (Tong et al. 2010). It often comes with hard con-
straints, turning the IBM problem into a constrained combi-
natorial optimization problem (Tong et al. 2017). Most pre-
vious research tackle this problem from individual level per-
spective assuming submodularity and uniform cost for re-
moving nodes (Ibrahim, Hefny, and Hassanien 2018). There-
fore, the greedy approach is the most common approach
to approximate optimization. However, these presumptions
does not hold when nodes in graphs represent collective con-
cepts. For instance, cities in a national transportation net-
work have different population, and isolating cities from the
network should have different costs. As a result, this issue re-
sembles a 0-1 knapsack problem, where the greedy method
can only guarantee a 1

2 -optimization (Martello 1990).
To better characterize the collective-level influence, this

paper presents a new approach dubbed Neural Influence
Blocking (NIB) that enforces hard constraints and optimizes
nodes selection to maximize the total scores with a neural
networks. The main contributions of this paper are: (1) for-
mulate influence blocking as a combinatorial optimization

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on graph with hard constraints; (2) design an effective and
efficient neural network to handle this problem; and (3) con-
duct extensive evaluations on synthetic networks.

Neural Influence Blocking
Problem Setup
On a weighted and undirected graph G = (V,E,C,A),
where V = {v1, v2, . . . , vi, . . . , vN} and E = {eij}N×N

stand for vertices and edges, respectively. Each node is
weighted by the cost ci ∈ C ∈ RN , and each edge is
weighted by the probability aij ∈ A ∈ RN×N where A
denotes the weighted adjacency matrix.

Given G and a hard constraint k ∈ R+, our goal is to find
a node selection yi = {0, 1} ∈ Y N that solves:

maximize
Y

∑
yi=1

si · yi, s.t.
∑
yi=1

ci · yi ≤ k, (1)

where si ∈ S ∈ RN represents the score of node i calculated
by an approximation algorithm based on the graph structure.

Node-level Proxy Function
The proxy function is critical to nodes selection such that it
generates a score of blocking effect for each node. A state-
of-the-art proxy function ranks the nodes with a vector ϕ =
I +AI + ...+ArI (Yan et al. 2019).

However, when node v belongs to the ith-order neighbor-
hood and the jth-order neighborhood of node u at the same
time given i < r and j < r, the expected number of nodes
activated by node u within r time steps is not calculated cor-
rectly. To fix the flaw, assuming that the influence of each
time step is independent of all the other steps, we define a
matrix Pr = I −

∏
r=1(1 − Ar), where

∏
represents the

element-wise product of the matrices. Here 1 − Ar denotes
the probabilities of the nodes not activating each other in the
rth time step. Pr computes the probabilities of each node
activating all other nodes respectively within r time steps.
The multiplication of a unit column vector with matrix Pr
will provide us a column vector in which each score is the
expectation of the number of nodes activated in r time steps
if the corresponding node is initially active.

Optimization with Hard Constraints
After scoring, the network influence blocking transfers into
a 0-1 knapsack problem. Dynamic programming is the most
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efficient algorithm to optimize such problems with a time
complexity of O(NW ) where N is the number of items and
W denotes the cost constraint (Martello, Pisinger, and Toth
1999). As an efficient method to approximate the optimiza-
tion, the greedy algorithm only guarantees a 1

2 -optimization
(Martello 1990). To achieve a better approximation with an
acceptable time cost, NIB leverages a neural network to in-
corporate the hard constraint into a cost function. NIB takes
the cost-score (ci, si)N pair as input and uses a hidden-layer
to turn the pair into one single value, which is further com-
pressed into range (0, 1) with a sigmoid function. The opti-
mal selection can be calculated through the function below:

y∗ = argmin
y

[

Hard Constraint︷ ︸︸ ︷
max(0,

∑N
i=1(ci · yi)− k) −

Scores in Total︷ ︸︸ ︷
λ
∑N

i=1 si · yi ].

(2)
The first term applies the hard cost constraint to the learn-
ing process while the second term defines the total score of
the selected node subset. λ is a parameter determining the
relative importance of the total score comparing to that of
enforcing the constraint. A smaller λ will make the neural
network more cautious with node selection.

Empirical Evaluation
Experiment Settings
All experiments are conducted on a computer equipped with
Ubuntu 20, 16-core CPU (3.0GHz), and 32GB memory. Ten
power-law graphs are generated randomly for the evaluation.
Simulations are run ten times on each graph to reduce the
uncertainty brought by the simulation process. We compare
NIB with four baselines: randomly selection (RD), greedy
algorithm with a traditional score function (GD), greedy al-
gorithm with the improved score function (IGD), and dy-
namic programming (DP). We evaluate the methods on the
Independent Cascade (IC) model (Kempe, Kleinberg, and
Tardos 2003) which is a classic propagation model.

Results and Analysis
Extra Protection We measure the extra protection effect
by taking the number of initially selected individuals away
from the number of individuals not activated as a result of
the intervention. Figure 1 shows that NIB achieves the high-
est extra protection rate when the selection rate is higher than
30%. Our score function also consistently outperforms the
traditional score function.
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Figure 1: Extra protection rate (EPR) of the methods.

Total Protection We also notice that NIB achieves 90%
total protection rate as early as when 70% of the population
are strategically blocked from the network. This finding sug-
gests that NIB is not only capable of achieving the highest
protection rate but also the most resource-efficient among
the methods.

Time Efficiency NIB requires extra time to learn the prob-
ability of each node being selected. Thus, it is slightly slower
than the greedy algorithms, but still reasonably fast. Differ-
ent from the dynamic programming algorithm, NIB and the
greedy methods spend most of the time on shuffling and cal-
culating the scores. Thus, the time spent by those methods
does not depend on the cost constraint.

Conclusion
This paper proposes a collective-level network influence
blocking problem and approached it as a combinatorial opti-
mization with hard constraints. To better model this prob-
lem, a new score function is designed. Neural network
is adopted to approximately optimize the node selection.
Extensive empirical experiments demonstrate that our ap-
proach achieves promising performance beyond the state-
of-the-art methods by a significant margin. In the future, a
more fine-grained learning method can be identified to fur-
ther improve the efficiency and the effectiveness of the node
selection.
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