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Abstract

Multi Agent Path Finding (MAPF) is widely needed to co-
ordinate real-world robotic systems. New approaches turn to
deep learning to solve MAPF instances, primarily using rein-
forcement learning, which has high computational costs. We
propose a supervised learning approach to solve MAPF in-
stances using a smaller, less costly model.

Introduction
Multi Agent Path Finding (MAPF) is the problem of find-
ing non-conflicting paths for multiple agents from their start
locations to their goal locations in discrete environments.
To successfully solve an MAPF instance, the agents must
take paths to their goal locations such that the agents do not
collide with one another and avoid preventing other agents
from reaching their goal locations. MAPF is NP-hard, and
recent work has turned to deep learning techniques, often
with computationally expensive training processes. For ex-
ample, the PRIMAL approach developed in (Sartoretti et al.
2019) is based on reinforcement learning and takes upwards
of three weeks to train. Recently, a very large dataset of
optimal solutions to MAPF instances was collected during
research on MAPFAST (Ren et al. 2021), a deep learning-
based MAPF algorithm selector. Using this dataset, we pro-
pose a supervised learning approach to cut down on com-
putational cost in training MAPF models. We then compare
the training times, accuracy, and performance in MAPF in-
stances achieved by models of varying complexity, and ana-
lyze how the model complexity affects its performance.

Related Work
Recently, work in MAPF has turned to deep neural net-
works and reinforcement learning. The first successful ap-
proach was the PRIMAL method developed by Sartoretti et
al. (Sartoretti et al. 2019), which used a convolutional neural
network architecture along with a mixture of imitation and
reinforcement learning. Following Primal, PRIMAL2 im-
proved the performance of PRIMAL in certain highly con-
strained instances by improving the coordination between
agents (Damani et al. 2021). However, PRIMAL as well as
other MAPF learning-based approaches can suffer from very
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high training times. PRIMAL, for instance, was trained for
three weeks before convergence. Changing the model archi-
tecture and training process may allow us to speed up the
training process and use less computational resources, which
is important given the monetary and environmental cost of
training large neural networks (Strubell, Ganesh, and Mc-
Callum 2019).

Approach
Optimal-MAPF Dataset
We used a dataset of optimal MAPF solutions gathered dur-
ing the development of MAPFAST, an algorithm selector
model that selects which algorithm should be fastest to run
for any given MAPF instance (Ren et al. 2021). The MAP-
FAST dataset consists of solution paths for close to 25,000
MAPF instances. It is possible for each instance to have up
to four solutions for each of the four solvers used in MAP-
FAST. The MAPFAST dataset was generated on a variety of
maps with different start and goal distributions for a large
range of agents. Each step along every path in the dataset
can be viewed as a decision point for every agent, to move
up, down, left, or right. We converted the MAPFAST dataset
into a dataset where every datapoint is the decision for a sin-
gle timestep for a single agent. For our work, we formatted
each point in our dataset so that it contained the same local
range of vision format that PRIMAL used (Sartoretti et al.
2019). The features of each datapoint included obstacles,
other nearby agents, other agents’ goals, and a unit vector
to the given agent’s goal position. Each label consists of the
relative next step that the agent took during that timestep.
All together, our dataset consists of 453,506 datapoints.

Model Architectures
We studied convolutional neural networks (CNNs), which
consist of a series of convolutional layers followed by a se-
ries of linear layers. The PRIMAL architecture is specifi-
cally based on the popular VGG-Net architecture (Simonyan
and Zisserman 2015). Although this architecture worked
well in PRIMAL, it consists of over 100 million network
parameters and therefore is expensive to train. We sought
to explore how much, if any, performance loss we would
encounter with smaller network architectures. We experi-
mented with the number of convolutional and linear layers
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Model # # Conv Layers # Linear Layers Params Accuracy Training Time Success Rate for Real Instances
1 2 1 27,902 .788 30m 5s .648
2 2 2 59,896 .806 33m 27s .600
3 4 2 185,096 .810 1h 13m 49s .634
4 3 2 219,944 .812 1h 5m 2s .621
5 4 2 551,976 .812 2h 16m 0s .669

Table 1: Results for a variety of model architectures. Models are ordered by size in terms of number of parameters. We found
the largest model to achieve both highest accuracy and best performance in solving real MAPF instances.

as well as with the shape of each layer while also consider-
ing the added cost of a greater model size.

Figure 1: Example of MAPF instance used to evaluate model
performance. The lines represent the current A* paths of
each agent to their goal location. The image on the left de-
picts the starting state of the instance, and the image on
the right depicts the ending state in which each agent has
reached its destination. The remaining paths depict the A*
paths that the agents took once they reached positions such
that the A* paths had no collisions.

Results
To measure the performance of the different architectures
we primarily use two metrics, prediction accuracy and per-
formance on real MAPF instances. Accuracy is measured in
terms of how often the model correctly predicts the step di-
rection the agent took in the optimal path. To evaluate each
model’s performance on real MAPF instances, we ran each
model on a sequence of 100 instances on the warehouse en-
vironment depicted in Fig. 1, averaging the model’s perfor-
mance over 20 iterations of each instance. Success rate is
the fraction of instances successfully solved by the model.
The sequences were built using randomized agent start and
goal locations, and we kept the sequence of instances con-
stant for each model to compare performance directly. We
considered an instance “completed” if the model was able to
move agents into positions such that the A* paths of agents
to their respective goal locations have no collisions in or-
der to add a “shortcut” to the path finding process. This was
done because the main purpose of using machine learning in
MAPF is that it can be difficult to coordinate many agents
when they are close together; if all agents can reach their
goal following simple paths, the hard part is over.

Our results are presented in Table 1. The two largest mod-
els achieved an accuracy of .812, the highest among tested
models. Based on our model experimentation, we found that
model size did correlate with training accuracy, with larger
models having higher accuracy. Accordingly, we found the

model most successful in solving real MAPF instances to
be the largest model. However, the smallest model had per-
formance close to the largest model. These results suggest
that a simpler model may be appropriate in solving MAPF
problems, and the higher training time that comes with more
complex models may not lead to any substantive difference
in paths generated by the model.

Conclusion and Future Work
Our work signifies the potential of supervised learning in
solving MAPF instances, especially in its ability to reduce
computational costs. With low training costs, we achieved an
accuracy above .8 in training and above .66 in performance.
In performance, the smallest model worked almost as well
as the largest model we trained.

There are multiple avenues for future work in this project.
First, we are interested in incorporating RL training after
supervised training, to investigate the possible cost saved by
using our preliminary ML model even when using an RL ap-
proach. Additionally, we are interested in using our smaller
models in the PRIMAL training method and comparing re-
sults to better understand the trade offs of model size/cost
and model performance.
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