

Gradient and Magnitude Based Pruning

for Sparse Deep Neural Networks

Kaleab Belay

Addis Ababa Institute of Technology
belete.kaleab@gmail.com

Abstract
Deep Neural Networks have memory and computational
demands that often render them difficult to use in low-
resource environments. Also, highly dense networks are
over-parameterized and thus prone to overfitting. To address
these problems, we introduce a novel algorithm that prunes
(sparsifies) weights from the network by taking into account
their magnitudes and gradients taken against a validation
dataset. Unlike existing pruning methods, our method does
not require the network model to be retrained once initial
training is completed. On the CIFAR-10 dataset, our method
reduced the number of para1meters of MobileNet by a factor
of 9X, from 14 million to 1.5 million, with just a 3.8% drop
in accuracy.

 Introduction

Although algorithms utilizing Multi-Layer Perceptrons have
existed since the 1990s, it is only over the last decade that
Neural Networks have started seeing wide usage. This is
largely due to advances in computing technologies that
allow for faster and more parallel execution of operations.
State-of-the-art Deep Neural Network (DNN) architectures
are dozens of layers deep and have hundreds of millions of
parameters, making them impossible to use in low-resource
computing environments.

We present an algorithm for reducing the number of
parameters of a DNN with minimal loss in accuracy. Our
method avoids having to retrain the model by learning the
importance of a specific weight in the network through its
gradient against a validation dataset. Weights which have
gradients below a specified threshold are assumed to have
settled close to their resting values and can be pruned based
on their magnitudes. Pruning is carried out iteratively
according to a specified schedule.

1Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 Related Work

Various pruning methods have been proposed to reduce
model size while incurring minimal loss in accuracy. In a
closely related work, Han et al. (2015) propose a magnitude-
based pruning approach in which the algorithm removes all
weights below a specific threshold and re-adjusts the
remaining weights in the next round of training. The
drawback of this method is that it requires the model to be
trained first so that the connections that matter can be
distinguished from those that do not, resulting in more than
100% performance overhead. The method suggested by Zhu
and Gupta (2017) also suffers from similar performance
issues.

Method

We present the pseudocode for our proposed pruning
scheme, which sparsifies a network given a set of model
hyperparameters. For every weight in the model’s weight
tensors and its corresponding elements in the gradient and
bitmask tensors, if the absolute value of the weight is below
the weight threshold β and its gradient is less than the
gradient threshold γ, we set its weight and its corresponding
bitmask to zero. Using NumPy’s array vectorization
operations, this algorithm takes less than a second to
implement on a network with 13.8 million parameters.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13126

 (a)

 (b)

Figure 1: (a) Top-1 accuracy for different values of β and γ
on MobileNet (b) Total weights pruned and sparsity for β =
0.05, γ = 0.05

The bitmask tensors were introduced so as to prevent
weights that have already been set to zero from being
updated in future backpropagation operations. This is done
by performing the Hadamard product of the training
gradients with the bitmasks.

Results

We define our own MobileNet in Keras based on the
instructions provided by Chen & Su (2017). We compare
the accuracy and compression rate achieved by pruning
networks trained with the scaling factor α of 0.5 and 1, and
width multipliers 1, 2 and 4 on the CIFAR-10 dataset. We
vary the pruning parameters β and γ as well as the pruning
schedule δ to determine how their interactions affect model
size and accuracy. We see that moderately aggressive values
assigned to the pruning parameters yield significant
reduction in model size while incurring minimal drop in
accuracy.

In the experimental results presented in the paper, pruning
is executed according to a specified schedule δ. So long as
the model received sufficient number of training steps to
recover from the changes introduced during pruning,
varying the δ didn’t yield any sufficient changes in accuracy
or compression rate. Figure 1a shows the accuracy of a
MobileNet model pruned with different values of β and γ.
Most pruning parameters yielded similar results, with the
model pruned with β = 0.05 and γ = 0.05 performing worse
than the others. The model pruned with β = 0.05 and γ =
0.001 had the best accuracy-compression tradeoff,
achieving 89.1% sparsity and a Top-1 accuracy of 78.2%.
The model had a higher accuracy when compared to the
approach by Chen et al., who were able to achieve an
accuracy of 73.8% for similar levels of sparsity.

Conclusion

This work introduces an iterative pruning scheme that
reduces model size during training. We demonstrate the
efficacy of this scheme and its compression-accuracy
tradeoff by using different pruning parameters. We believe
these results will encourage the use of model pruning in low
resource environments.

References
Chen, H. and Su, C. 2019. An Enhanced Hybrid MobileNet.
arXiv preprint. arXiv:1712.04698 [cs.CV].
Han, S.; Pool, J.; Tran, J. and Dally W. J. 2015. Learning
both weights and connections for efficient neural networks.
In NeurIPS.
Rhu, M.; Gimelshein, N.; Clemons, J.; Zulfiqar, A. and
Keckler, S. 2015. vdnn: Virtualized deep neural networks
for scalable, memory-efficient neural network design. arXiv
preprint. arXiv:1602.08124 [cs.DC].
Zhu, M. and Gupta, S. 2015. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
arXiv preprint. arXiv:1710.01878v2 [stat.ML].

Algorithm 1: Gradient and Magnitude Based Pruning
Parameters: ∇ wC, tensor of weight gradients
 W, weight tensor of the network
 B, bitmask tensor of the network

 β, weight threshold
 γ, gradient threshold
 δ, pruning schedule
 epoch, current epoch
Output: Sparse Neural Network
1: for each: w ∈ W, g ∈ ∇ wC, b ∈ B do
2: if |w| < β and |g| < γ and b ≠ 0 then
3: b ← 0
4: w ← 0
Ensure: epoch % δ = 0

13127

