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Abstract  
Deep Neural Networks have memory and computational 
demands that often render them difficult to use in low-
resource environments. Also, highly dense networks are 
over-parameterized and thus prone to overfitting. To address 
these problems, we introduce a novel algorithm that prunes 
(sparsifies) weights from the network by taking into account 
their magnitudes and gradients taken against a validation 
dataset. Unlike existing pruning methods, our method does 
not require the network model to be retrained once initial 
training is completed. On the CIFAR-10 dataset, our method 
reduced the number of para1meters of MobileNet by a factor 
of 9X, from 14 million to 1.5 million, with just a 3.8% drop 
in accuracy. 

 Introduction   

Although algorithms utilizing Multi-Layer Perceptrons have 
existed since the 1990s, it is only over the last decade that 
Neural Networks have started seeing wide usage. This is 
largely due to advances in computing technologies that 
allow for faster and more parallel execution of operations. 
State-of-the-art Deep Neural Network (DNN) architectures 
are dozens of layers deep and have hundreds of millions of 
parameters, making them impossible to use in low-resource 
computing environments. 

We present an algorithm for reducing the number of 
parameters of a DNN with minimal loss in accuracy. Our 
method avoids having to retrain the model by learning the 
importance of a specific weight in the network through its 
gradient against a validation dataset. Weights which have 
gradients below a specified threshold are assumed to have 
settled close to their resting values and can be pruned based 
on their magnitudes. Pruning is carried out iteratively 
according to a specified schedule.  
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 Related Work  

Various pruning methods have been proposed to reduce 
model size while incurring minimal loss in accuracy. In a 
closely related work, Han et al. (2015) propose a magnitude-
based pruning approach in which the algorithm removes all 
weights below a specific threshold and re-adjusts the 
remaining weights in the next round of training. The 
drawback of this method is that it requires the model to be 
trained first so that the connections that matter can be 
distinguished from those that do not, resulting in more than 
100% performance overhead. The method suggested by Zhu 
and Gupta (2017) also suffers from similar performance 
issues. 

Method 

We present the pseudocode for our proposed pruning 
scheme, which sparsifies a network given a set of model 
hyperparameters. For every weight in the model’s weight 
tensors and its corresponding elements in the gradient and 
bitmask tensors, if the absolute value of the weight is below 
the weight threshold β and its gradient is less than the 
gradient threshold γ, we set its weight and its corresponding 
bitmask to zero. Using NumPy’s array vectorization 
operations, this algorithm takes less than a second to 
implement on a network with 13.8 million parameters. 
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Figure 1: (a) Top-1 accuracy for different values of β and γ 
on MobileNet (b) Total weights pruned and sparsity for β = 
0.05, γ = 0.05 
 

The bitmask tensors were introduced so as to prevent 
weights that have already been set to zero from being 
updated in future backpropagation operations. This is done 
by performing the Hadamard product of the training 
gradients with the bitmasks. 

Results 

We define our own MobileNet in Keras based on the 
instructions provided by Chen & Su (2017). We compare 
the accuracy and compression rate achieved by pruning 
networks trained with the scaling factor α of 0.5 and 1, and 
width multipliers 1, 2 and 4 on the CIFAR-10 dataset. We 
vary the pruning parameters β and γ as well as the pruning 
schedule δ to determine how their interactions affect model 
size and accuracy. We see that moderately aggressive values 
assigned to the pruning parameters yield significant 
reduction in model size while incurring minimal drop in 
accuracy.  

In the experimental results presented in the paper, pruning 
is executed according to a specified schedule δ. So long as 
the model received sufficient number of training steps to 
recover from the changes introduced during pruning, 
varying the δ didn’t yield any sufficient changes in accuracy 
or compression rate. Figure 1a shows the accuracy of a 
MobileNet model pruned with different values of β and γ. 
Most pruning parameters yielded similar results, with the 
model pruned with β = 0.05 and γ = 0.05 performing worse 
than the others. The model pruned with β = 0.05 and γ = 
0.001 had the best accuracy-compression tradeoff, 
achieving 89.1% sparsity and a Top-1 accuracy of 78.2%. 
The model had a higher accuracy when compared to the 
approach by Chen et al., who were able to achieve an 
accuracy of 73.8% for similar levels of sparsity. 

Conclusion 

This work introduces an iterative pruning scheme that 
reduces model size during training. We demonstrate the 
efficacy of this scheme and its compression-accuracy 
tradeoff by using different pruning parameters. We believe 
these results will encourage the use of model pruning in low 
resource environments.  
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Algorithm 1: Gradient and Magnitude Based Pruning 
Parameters: ∇ wC, tensor of weight gradients 
         W, weight tensor of the network 
         B, bitmask tensor of the network 

        β, weight threshold 
         γ, gradient threshold 
                      δ, pruning schedule 
                      epoch, current epoch 
Output: Sparse Neural Network 
1: for each: w ∈  W, g ∈  ∇ wC,  b ∈  B do 
2:  if |w| <  β and |g| < γ and b ≠ 0 then 
3:   b ← 0 
4:   w ← 0  
Ensure: epoch % δ = 0 
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