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Abstract

We introduce a novel technique to identify three spectra rep-
resenting the three primary materials in a hyperspectral image
of a scene. We accomplish this using a modified autoencoder.
Further research will be conducted to verify the accuracy of
these spectra.

Introduction
Hyperspectral images are used to identify materials, objects,
and chemical processes in a scene. Each pixel in a hyper-
spectral image is a spectral profile that characterizes the in-
tensity of light at that pixel as a function of wavelength.
Since material has unique spectra, hyperspectral images are
often used to identify the presence and relative abundances
of materials in a scene. However, identifying which mate-
rials can be found in a scene is often a slow and difficult
process. The goal of this project is to use an autoencoder
to identify the dominant materials found in a hyperspectral
image with in an unsupervised manner.

Our method relies on the interesting observation that the
spectral complexity of most scenes is not arbitrary; in that, it
is well known that most scenes are well approximated with
three material and two lighting spectra (Finlayson, Drew,
and Funt 1993). As a result it was assumed that the hyper-
spectral images had three main materials, with each mate-
rial being represented by a unique spectra, and a material
map (Kokaly, King, and Hoefen 2011). The light sources
were not taken into account in this initial study. Given this,
the hyperspectral image h(x, y, λ) can be represented by the
following equation:

h(x, y, λ) =

2∑
r=0

πr(λ)αr(x, y), (1)

where πr is is the spectra corresponding to the r-th material
map, and αr ≥ 0 being the rth material map.

Since most datasets do not have ground truth material
spectra and maps, we design an unsupervised approach for
estimating them. Specifically, we train an autoencoder for
hyperspectral images that is endowed with some key proper-
ties. First, the decoder is designed to implement (1), which
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attributes physical meaning to the outputs of the encoder.
Second, the encoder is designed to output the three spec-
tral profiles, {πr(λ), r = 0, 1, 2}; subsequently, the material
map is estimated at each pixel under the assumption that the
spectrum at any given pixel lies in the conic hull of the mate-
rial spectra. Third, we train the autoencoder end-to-end and
the network learns to recognize the three dominant materials
such that the spectra in any given pixel lies in the conic hull
of these materials.

Materials and Methods
Dataset
The dataset used to train our autoencoder was sourced from
the Harvard Real World Hyperspectral Images Database
(Chakrabarti and Zickler 2011). The database was selected
due to the high quality of the images as well as the relative
ease of information extraction and inputting the images into
a tensorflow pipeline. The dataset consisted of hyperspec-
tral images 1040 pixels long and 1392 pixels wide with 31
spectral bands. 50 images were of indoor and outdoor scenes
with daylight illumination, and 27 were of indoor scenes un-
der artificial and mixed illumination. The 77 original images
were split into 20 test images and 57 training images. Images
in both the training and testing set were separated into four
smaller images of size 512 by 512 to augment the dataset as
well as to increase processing speed. Images in the training
set were duplicated and flipped on the x and y axis to further
augment the dataset. These images contained a variety of
small scenes photographed at varying distances that would
likely be found around a university campus such as desks,
trees, walls, and computers.

Autoencoder
An autoencoder was programmed in keras to separate the
three primary materials (Chollet 2015). Autoencoders are
neural networks designed to encode an image into a com-
pressed format, and later decompress the image into its orig-
inal state (Liou et al. 2014). The portion of the autoencoder
that encodes the hyperspectral image into a compressed for-
mat is quite similar to a standard autoencoder. First, the im-
age is reshaped into a two dimensional image with the x axis
representing the pixel and the y axis representing the spec-
tra. The image is then fed through a series of convolutional
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Figure 1: Original spectra compared to recreated spectra for
two different pixels in two different test images

and max pooling layers followed by a series of fully con-
nected layers with dropout. The resulting compressed image
was represented by a 3× 31 matrix.

The decoder, however, was structured differently from
a standard autoencoder. Rather than decoding the image
through a neural network it was decoded by utilizing the un-
derlying physical principles of a hyperspectral image. The
3× 31 matrix was treated as though it represented the spec-
tra of the 3 primary materials making up the scene, each
of which had 31 different spectral bands. Material maps
were then generated by multiplying the pseudo-inverse of
the spectra by the original hyperspectral image.

The three dimensional matrix containing three primary
material maps was run through a relu activation layer. The
relu activation forced the material maps to become positive,
ensuring that the spectra in any given pixel lies in the conic
hull of the three primary materials. After being run through
the relu, the material maps were multiplied by the spectra to
reconstruct the original hyperspectral image. Loss was de-
termined by the normalized mean squared error between the
original and reconstructed hyperspectral image.

Results
The autoencoder was trained on the dataset for 25 epochs
and a validation loss of 0.0130 was achieved. As seen in
figure 2 the recreated spectra for many of the pixels were
quite similar to the original spectra, likely due to the spectra

Figure 2: Four material maps, with the corresponding recre-
ated material map to right of the original.

Figure 3: The three main spectra of a wooden floor

being optimized for over the material maps. This results in
lowered accuracy for material maps (figure 3).

The trained model was then split into a decoder and and
encoder. The encoder portion compressed a hyperspectral
image into the spectra of its three primary materials. An im-
age of a wooden floor generated the three spectra seen in
figure 4.

Future research will investigate whether the spectra dis-
played are similar to materials found in wood, improve the
accuracy of the material maps, and improve the ability of
the model to generalize on scenes different from the Har-
vard dataset.
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