
An Extraction and Representation Pipeline for Literary Characters

Funing Yang
Wellesley College

Wellesley, Massachusetts 02481
fyang3@wellesley.edu

Abstract

Readers of novels need to identify and learn about the charac-
ters as they develop an understanding of the plot. The paper
presents an end-to-end automated pipeline for literary char-
acter identification and ongoing work for extracting and com-
paring character representations for full-length English nov-
els. The character identification pipeline involves a named
entity recognition (NER) module with F1 score of 0.85, a
coreference resolution module with F1 score of 0.76, and a
disambiguation module using both heuristic and algorithmic
approaches. Ongoing work compares event extraction as well
as speech extraction pipelines for literary characters represen-
tations with case studies. The paper is the first to my knowl-
edge that combines a modular pipeline for automated charac-
ter identification and representation extraction and compar-
isons for full-length English novels.

Introduction
Literary characters play an integral role in plot develop-
ment and narrative understanding. The digitization of liter-
ary databases and the advent of automated information re-
trieval have enabled computational character extraction and
understanding, from a hierarchical Bayesian model for char-
acter types inference in 18th and 19th-century English nov-
els (Bamman, Underwood, and Smith 2014), to a ‘narra-
tologically’ grounded definition of character and a super-
vised classifier to identify characters in Russian folktales
(Jahan and Finlayson 2019). However, there has been no
work on an end-to-end character identification pipeline for
full-length novels with the most recent natural language pro-
cessing modeling techniques, and few have focused on ex-
tracting and comparing dense vector representations of liter-
ary characters from narratology grounded definitions. This
paper has the following two contributions: 1) A modular
pipeline to automatically extract literary characters from an
unstructured text of a full-length novel that achieves reason-
able performance for Jane Austen’s Sense and Sensibility. 2)
Quantified embedding representation extractions and com-
parisons for literary characters from narrative theory’s defi-
nitions of literary events and speech.
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Named Entity Recognition
The first module in the character identification pipeline in-
volves extracting entities from an unstructured text with a
Named Entity Recognition (NER) model. As the literary do-
main poses unique challenges given varying styles and struc-
tures, the LitBank NER dataset that covers 100 English nov-
els (Bamman, Popat, and Shen 2019) was chosen for model
training. While LitBank collects up to 4 nested layers of en-
tity labels for each token, to obtain the most information for
each mention, only the outermost nested mention layer (with
the longest spans) is collected.

I have trained and compared 4 separate model architec-
tures: 1) CRF (baseline) with word identity (e.g. case, digit),
word suffix, word shape, and part of speech tags; 2) LSTM;
3) Bi-LSTM-GloVe consisting of an embedding layer, which
is then passed through a dropout layer and a Bi-LSTM layer;
4) Bi-LSTM-CRF-GloVe that combines previous attempts
with CRF-Bi-LSTM (Huang, Xu, and Yu 2015) with its
proven robustness and inexpensiveness to train; I also ap-
plied Glove (Pennington, Socher, and Manning 2014) word
embeddings for introducing context and replaced rare class
labels (i.e., VEH (vehicle) and ORG (organization)) unim-
portant for performance to ’O’ tags. Overall, the weighted
average of precision, recall, and F1 score for each class are
used to evaluate the NER model as an aggregated overall
performance below on the Litbank dataset:

Recall Precision F1
CRF 0.51 0.67 0.58

LSTM 0.83 0.79 0.79
BiLSTM 0.82 0.82 0.81

BiLSTM-CRF 0.86 0.87 0.85

Table 1: Averaged results for NER models

The Bi-LSTM-CRF model with GloVe embedding and
rare label classes removed achieved F1 score of 0.85 and
outperforms the CRF baseline by over 20 percentage points,
and was used for the downstream pipeline.

Coreference Resolution
Coreference Resolution is the second module in the charac-
ter identification pipeline where it links expressions that re-
fer to the same entity. Toward the goal of improving perfor-
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Recall Precision F1
SpanBERT + Linear 44.1 56.9 48.3

SpanBERT + Bi-LSTM 72.4 72.9 72.1
BART + Bi-LSTM 61.9 55.9 40.7

SpanBERT + Bamman et al. 76.8 75.7 76.1
SpanBERT + GRU + Bamman et al. 77.7 76.0 76.1

Table 2: CONLL score for Coreference Models

mance on the LitBank coreference resolution dataset (Bam-
man, Lewke, and Mansoor 2020), I built my pipeline on top
of Bamman et. al’s pre-processing and post-processing pipe-
line but with 5 different model architectures for a compar-
ative study on model performance and compared different
contextual embeddings (SpanBERT and BART), and classi-
fication heads (linear, Bi-LSTM, GRU). First, I tried Span-
BERT embeddings with linear layer (baseline), as Span-
BERT outperforms BERT on coreference resolution tasks
by masking spans of tokens instead of individual ones (Joshi
et al. 2020). The mention representation consisted solely of
the raw SpanBERT embeddings for the start and end in-
dices, and the mention representations get passed through
a linear layer with dropout to compute the candidate scores.
Second, I tried SpanBERT Embeddings with Bi-LSTM, as
Bi-LSTMs can capture the state history over a wide context
both to the left and right of a given word. Third, I tried BART
(Lewis et al. 2020) embeddings with Bi-LSTM architecture.
Fourth, I tried SpanBERT embeddings with the Bamman et
al. pipeline. And fifth, I tried SpanBERT embeddings + GRU
with the Bamman et al. pipeline. The presence of 4) and 5)
are to explore whether complex literature-specific embed-
dings and attention in the original pipeline are useful for ac-
tual predictions. Surprisingly, my simpler setup is almost at
par with Bamman’s more complex architectures.

For model evaluation, I computed precision, recall, and
F1 score for all the coreference architectures above with
the CONLL score composed of three well-established met-
rics: B-CUBED, MUC, CEAF (Moosavi and Strube 2016)
in Table 2. The SpanBERT + GRU architecture achieved the
top performance of 77.7 recall, 76.0 precision, and 76.1 F1,
which is applied downstream.

Evaluation
While a quantitative evaluation of the full pipeline is still
in-progress, I have qualitatively evaluated the pipeline on
Jane Austen’s Sense and Sensibility as well as J.K. Rowl-
ing’s Harry Potter to test generalization for two contrasting
genres. Consider the following predictions where an itali-
cized span represents a different character cluster:

The family of Dashwood had long been settled in Sus-
sex. The late owner of this estate was a single man,
who lived to a very advanced age, and who for many
years of his life, had a constant companion and house-
keeper in his sister. (Austen Sense and Sensibility)

In summary, the model produces largely sensible results
consistent with maximal span tagging in NER and coref-
erence. The most common failure cases are that NER of-
ten fails to recognize uncommon names as entities (such as

‘Elinor’); that ample use of descriptors and nested mentions
make resolving entities difficult; and very prominent entities
representing main characters tend to appear in multiple clus-
ters because the coreference model has trouble recognizing
links that are distant from each other. However, I observed
improvements with downstream finetuning with heuristics
and word embedding comparisons.

Ongoing Work: Character Representation
Aside from the quantitative evaluation framework for the
character identification pipeline, my ongoing work involves
a comparison on character representation from two narra-
tology definitions: 1) character as a representation of lit-
erary events; 2) character being represented by their di-
rect speech. I have built an unsupervised event extraction
pipeline inspired from (Chambers and Jurafsky 2008) that
mines event clusters per literary character; a representa-
tion extraction and comparison pipeline for both contextu-
alized embeddings (i.e., BERT) and static embeddings (i.e.,
GloVe) and uses clustering and distance metrics for charac-
ters comparison. I am also designing a speech-based repre-
sentation pipeline to contrast characters from their actions
versus speech.
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