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Abstract

The Cloud Causality Analyzer (CCA) is an ML-based analyt-
ical pipeline to automate the tedious process of Root Cause
Analysis (RCA) of Cloud IT events. The 3-stage pipeline is
composed of 9 functional modules, including dimensionality
reduction (feature engineering, selection and compression),
embedded anomaly detection, and an ensemble of 3 custom
explainability and causality models for Cloud Key Perfor-
mance Indicators (KPI). Our challenge is: How to apply
a reduced (sub)set of judiciously selected KPIs to detect
Cloud performance anomalies, and their respective root
causal culprits, all without compromising accuracy?

Introduction
Anomaly Detection (AD)—the identification of novel or ab-
normal events—is ever more essential. Our challenge is to
design explainable AD methods, capable to drill via causal
inference from symptoms to root causes, and thus automate
the deeply involved Root Cause Analysis of Cloud events.

We propose the Cloud Causality Analyzer (CCA)—a fully
unsupervised pipeline that works on a compressed and chan-
nelized stream of multivariate timeseries – Key Performance
Indicators (KPIs) from IBM’s Cloud storage environments
(Fig. 1). Besides KPI feature engineering and compres-
sion, CCA detects outliers, infers explanations, learns causal
graphs and enables RCA-based anomaly troubleshooting.
For scalability we introduce an upstream dimensionality re-
duction Front-end module that selects a compressed set of
representative features, which are further ingested in a chan-
nelized Temporal Convolutional Network (TCN) AD model,
a.k.a. Mid-end. Finally, CCA’s Back-end uses SHAP ex-
plainability (Lundberg and Lee 2017) and two complemen-
tary causality models to identify the culprits for the detected
anomalies – all ensembled in a hierarchical manner (Fig. 2).

Application: CCA is beta-tested by Cloud subject mat-
ter experts (SMEs) to troubleshoot anomalies on 250–1K+
KPIs across 10K+ large-scale storage systems. Follow-
ing an alert for deteriorating performance, e.g., longer re-
sponse times, CCA’s Front-end presents to the SME two
sets (”channels”) of the most Representative KPIs: grouped
as ”normal” or ”abnormal”, based on their deviation from
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Figure 1: KPIs Dashboard GUI (anomalies in red).

the typically correlated metrics during the analyzed win-
dow (one week). The ’channelized’ Rep-KPIs are then in-
gested in CCA’s Mid-end anomaly detection module to iden-
tify when the range anomaly occurred and which KPIs show
the top anomalous symptoms. Thereafter, the Back-end in-
vestigates the root causal chains that explain which metrics
caused the anomaly and ’infected’ other KPIs. This in turn
enables the support engineer to effectively troubleshoot the
anomalous event based on the culprit KPIs.

Cloud Causality Analyzer
Front-end: Multi-channel DimRedux The Cloud
Causality Analyzer performs multi-channel dimensionality
reduction for multivariate KPI-based timeseries via k-shape
clustering (Paparrizos and Gravano 2016), feature selection,
channel population and inter-channel weighting.

(1) k-shape Clustering of KPIs creates k well-separated
homogeneous clusters through a robust iterative refinement
algorithm, scaling linearly with the N weekly features (Pa-
parrizos and Gravano 2016). We validate the clusters’ cohe-
sion and separation by silhouette and gap scores, and inter-
pret them using t-SNE (van der Maaten and Hinton 2008)
and UMAP (McInnes, Healy, and Melville 2018) plots.

(2) Rep–KPI Selection. We characterize each cluster
with a fixed number of representative KPIs (R-KPIs)—the
features that best describe the KPI patterns in the respective
cluster (Thalheim et al. 2017). However, for AD, we distin-
guish two sets of R-KPIs: (i) central, nearest the centroid, to
represent ”normality”; (ii) peripheral, the farthest from the
centroid, to capture the less frequent ”abnormalities”.
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Figure 2: Cloud Causality Analyzer: Simplified pipeline.

Figure 3: CCA Mid-end: Embedded-AD implemented as a
TCN–based Autoencoder with 2-channel Attention.

(3) Population of Central and Peripheral Channels. The
two KPI channels are intra-sorted (i) by their individual
shape-based distance scores relative to the centroids, and
then (ii) frequency-based aggregated across one month.

Mid-end: Embedded Compressed AD CCA’s FE feeds
the compressed and ranked Representative central and pe-
ripheral KPIs into a custom embedded AD (e-AD). We as-
sume that the majority of the data is ’normal’, i.e., will be
well-learned and reconstructed by a lossy Autoencoder (AE)
model, whereas the novelties (not necessarily abnormal) will
be detected as having high reconstruction errors (residuals).

(1) TCN-based AE with 2-channels, up/down-
weighted, or inter-sorted by ‘Attention’-lite heuristics, com-
prising two separable Depth-wise Convolutional (DWC)
layers. We initialize the DWC weights in the range [0, 1],
which after training we use as attention scores. The tem-
poral convolutions provide three key benefits: (i) a flexible
Receptive Field that is sensitive to feature ordering and size,
(ii) causal modelling, preventing any future-past leakage,
and (iii) dilated convolutions and residual modules for a
deeper history (vs. our prior LSTM-based models).

(2) Residual Error –based AD post-processor is used to
identify the anomaly windows relative to k-standard devia-
tions. We output only sustained anomalies of multiple time
steps; thus we discard the punctual outliers and short-lived
bursts (≤ 15-min). The Top-k contributors (T-KPIs) are ex-
tracted based on their autoencoder reconstruction error.

The embedded-Anomaly Detector is validated against
ground-truth estimates from human SME labels and a refer-
ence AD pipeline. Overall, we achieve ca. 67% (50− 88%)
accuracy with 15x less KPIs vs. the reference.

Back-end: AD Explainability & RCA CCA entails a hi-
erarchical ensemble for Cloud event-troubleshooting that
discovers: (i) SHAP-based punctual explanations via SHAP-
XAD, and (ii) Granger- (Granger 1969) and TCDF-based
(Nauta, Bucur, and Seifert 2019) causal graphs, as follows.

Figure 4: CCA Back-end: Ensemble-based RCA trou-
bleshooting of a Cloud Storage performance anomaly within
a +/-8hr window (left), and a causality graph (right).

(1) SHAP-based eXplainable AD (SHAP-XAD) is
CCA’s punctual explainability that applies Kernel-SHAP to
derive the local feature importance scores for each e-AD
prediction; this generates the eXplanatory KPIs per each
anomalous Top-KPI (Fig.4).

(2) Metric-dependency Extractor based on the Front-
end’s Central and Peripheral Representative KPIs, as below.

(2a) Granger-PVG tests for Granger causality across
targeted time periods, reflecting short delay lags (≤ 10
time steps) in the causality chains. We build Permutation-
Validation of Granger (PVG) to validate these causalities
by discarding: (i) relationships that persist after random-
shuffling of the ”cause”, and (ii) bidirectional causations.

(2b) cTCDF. In contrast to the pairwise Granger, TCDF
(Nauta, Bucur, and Seifert 2019) is a NxN-parallel model,
similar to Neural Granger (Tank et al. 2021), for discovering
causal relationships (incl. instantaneous) with delays. These
are validated against confounders via a permutation-based
method (PIVM). In CCA’s compressed-TCDF (cTCDF), we
leverage the mid-end TCN’s kernel size, number of hid-
den layers and dilation coefficients to re-tune the Receptive
Field. We ingest the compressed Rep-KPIs to obtain vali-
dated, causal graphs with lags (0-16 timesteps).

(3) RCA Ensemble troubleshooting example: (i) a 16-
hour troubleshooting window is centered at each top e-AD
anomalous point and is explained by SHAP-XAD, (ii) in
this window we perform the causal exploration via both
Granger-PVG & cTCDF, (iii) to build the ensemble graph,
as shown in Fig. 4. The associated video illustrates CCA’s
operation and the steps taken by a user, typically a Cloud
SME, to troubleshoot detected storage systems’ failures.

Conclusion & Next Steps
CCA proposes a novel RCA automation solution for Cloud
KPI features selection, incl. their reduction from 100s to 10s
of multivariate timeseries, anomaly detection and discovery
of the potential causal culprits. CCA brings distributed ro-
bustness in a 3–stage pipeline and is used in conjunction
with a data-lake-based Dashboard to detect and troubleshoot
Cloud events. We are working on fault-localization in the
systems’ topology, pruning the ensemble graphs, incorpo-
rating the k-shape clustering into the ensemble logic and an-
alyzing causal chains’ dynamics during real-life failures.
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