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Abstract

As countries enter the endemic phase of COVID-19, peo-
ple’s risk of exposure to the virus is greater than ever. There
is a need to make more informed decisions in our daily
lives on avoiding crowded places. Crowd monitoring systems
typically require costly infrastructure. We propose a crowd-
sourced crowd monitoring platform which leverages user in-
puts to generate crowd counts and forecast location crowd-
edness. A key challenge for crowd-sourcing is a lack of in-
centive for users to contribute. We propose a Reinforcement
Learning based dynamic incentive mechanism to optimally
allocate rewards to encourage user participation.

Introduction
At present, countries with high vaccination rates like Sin-
gapore are starting to restart their socio-economic activities
by moving towards the endemic stage of COVID-19. They
still face the risk of increasing infection numbers amid the
COVID-19 mutations. The key way to limit the spread is still
social distancing. There is a need to make more informed de-
cisions in our daily lives (e.g., visiting less crowded places).

Crowd monitoring systems typically require investment in
infrastructure, e.g., closed-circuit television (CCTV). How-
ever, this is expensive and lacks the mobility to monitor di-
verse locations. Alternatively, individuals can carry along
devices such as Radio-frequency Identification (RFID) tags
or permit location sharing using mobile phones. This pro-
vides a gauge on how crowded a place is. However, this ap-
proach requires wide adoption of such devices.

Recently, (Jiang et al. 2021; Teng et al. 2021) proposed
a crowdsourced image-based solution to obtain information
of the crowd situation at different locations. When visiting
different areas of interest, users use their mobile phones to
capture an image of the crowd situation. The images are ana-
lyzed for crowdedness levels and shared on the platform for
everyone. Over time, as more users contribute to the plat-
form, it is able to capture daily and weekly crowd patterns
and provide forecasts for future time points. It is able to pro-
vide data-driven answers to questions like what is the best
day of the week to visit different campus eateries (Teng et al.
2021). However, the system is reliant on contributions from
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the public. A key challenge for crowd-sourcing is a lack of
incentive for users to contribute. This paper1 improves on
(Jiang et al. 2021) by introducing a Reinforcement learning-
based budget-aware dynamic incentive mechanism to allo-
cate reward points to maximize user uploads optimally.

System Design
The main features of crowded.sg are as follows:
1. Current crowd conditions: Users are presented with a

map showing key locations of interest that are color
coded based on how crowded they are (Fig. 1(a)). Users
can click on location markers to view the latest up-
loaded images (Fig. 1(b)), which have been algorithmi-
cally blurred for privacy protection (Fig. 1(c)). Users are
able to curate images by upvoting or downvoting.

2. Predicted crowd level based on historical data: We pro-
vide an estimate of the current crowd level for every hour
of the week, displayed in the form of a heat map for
weekly trends or bar graph for hourly trends (Fig. 1(d)).

3. Dynamic point reward system and leaderboard: To in-
centivize users to upload more frequently, a point reward
system and a monthly leaderboard are incorporated. The
number of points rewarded for each location is displayed
inside the location marker, and users can toggle to display
(Fig. 1(e)). Registered users can earn points and compete
with other users in the leaderboard (Fig. 1(f)).

AI Engine
The AI engine contains a visual analytics module for crowd
counting and a prediction module for forecasting the number
of visitors at various locations.

The Vision module takes a hybrid approach by combining
Mask R-CNN (He et al. 2017), an object detection model,
and CSRNet (Li, Zhang, and Chen 2018), a density estima-
tion method into a single workflow to handle both sparse and
dense crowds.

The Predictive module models crowd trends using re-
gression models to better deal with the irregular time se-
ries caused by missing data or outliers. Implemented using
Prophet (Taylor and Letham 2018), an open-source forecast-
ing library designed by Facebook.

1Demo video: https://youtu.be/4ilOeACyUHs
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Figure 1: The crowded.sg user interaction design.
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Figure 2: Schemes comparison.
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Figure 3: Points vs. States.
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Figure 4: Redundant upload by hour.

The Incentive module chooses an appropriate amount of
reward points to attract user uploads while minimizing in-
centive expense. The task can be considered as a sequen-
tial decision problem where the platform’s demand for im-
age sensing data and the supply of user uploads determine
the points allocated for each location. The problem is for-
mulated as a Markov Decision Process (MDP) (Bellman
1957). The state space is defined by the sensing demand
(i.e., current crowd level, next hour crowd level, and click
rate) and image upload supply (i.e., time since last upload
and upload rate for the past hour). The agent (Yu, Shen, and
Miao 2007) allocates points for each location and obtains
greater rewards for increasing image uploads while keeping
incentive expenses low. The MDP with unknown transition
probability is solved using the Deep Q-Network (DQN) al-
gorithm (Mnih et al. 2015), which uses the neural network
to find the optimal policy by learning the state-action values.

Experimental Evaluation
The DQN is trained on platform usage data (collected us-
ing Google Analytics) and external data obtained from the
Google Popular Times API We perform simulations based
on a school canteen on a weekday from 00:00 AM to 23:59
PM. The crowd level can be observed in Fig. 2, with peak
crowds observed during lunch hours. The number of par-
ticipants using the platform are modelled to be a function
of the crowd level. There are three tranches of participants,
each with a willingness to upload only if the points awarded
exceed their preference threshold. The preference threshold
is arranged in an ascending order. At every 10 minutes in-

terval, the agent will sense the environment and adjust the
points offered.

The incentive scheme is observed to respond to the current
system states. The points chosen by the agent can be visu-
alised in Fig. 3. States with higher sensing demand and lower
image upload supply are allocated higher points and vice
versa. In contrast, static incentive schemes offered to users
do not vary according to the current system states. More-
over, the dynamic incentive scheme also takes into account
the next hour crowd level derived from historical data (Fig.
2). For example, the points awarded are adjusted upwards
when the location is expected to become more crowded.
This serves to encourage more uploads at the location so
that users of the platform can make up-to-date informed de-
cisions on whether to avoid the place.

The dynamic incentive scheme is also budget-aware. Less
points are allocated for off-peak hours with less crowds.
For places with up-to-date information, there will be fewer
points offered for the next period to reduce the number of
redundant uploads (Fig. 4).

Conclusions

We improve the crowd-sourced crowd monitoring platform
by introducing a dynamic incentive mechanism to motivate
user uploads. The increased contributions lead to more up-
to-date information being shared on the platform and more
data collected for training forecasting models. As a result,
users can make more informed social distancing decisions.
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