
RES: An Interpretable Replicability Estimation System for Research Publications

Zhuoer Wang1*, Qizhang Feng1*, Mohinish Chatterjee1*, Xing Zhao1, Yezi Liu1, Yuening Li1,
Abhay Kumar Singh1, Frank M. Shipman1, Xia Hu2, James Caverlee1

1Department of Computer Science and Engineering, Texas A&M University
2Department of Computer Science, Rice University

{wang, qf31, mohi chat, xingzhao, yeziliu, liyuening, abhay, shipman, caverlee}@tamu.edu
xia.hu@rice.edu

Abstract

Reliable and faithful research is the cornerstone of break-
through advancements and disruptive innovations. Assessing
the credibility of scientific findings and claims in research
publications has long been a time-consuming and challeng-
ing task for researchers and decision-makers. In this paper,
we introduce RES - an intelligent system that assists humans
in analyzing the credibility of scientific findings and claims
in research publications in the field of social and behav-
ioral sciences by estimating their replicability. The pipeline
of RES consists of four major modules that perform fea-
ture extraction, replicability estimation, result explanation,
and sentiment analysis respectively. Our evaluation based
on human experts’ assessments suggests that the RES has
achieved adequate performance. The RES is also built with
a Graphical User Interface (GUI) that is publicly accessible
at https://tamu-infolab.github.io/RES/.

Introduction
Replicability is central to the evaluation of research cred-
ibility. Findings and claims made in unreplicable research
may mislead subsequent researchers and decision-makers,
resulting in enormous social and economic impacts. Due to
the growing concerns of research replicability across many
fields (Camerer et al. 2016; Aarts et al. 2015; Altmejd et al.
2019), efforts such as the Open Science Collaboration (Lak-
ens et al. 2012) and Many Labs (Klein et al. 2014, 2018)
have led pioneering efforts to directly replicate experiments
from some high profile studies.

While promising, these efforts are expensive, time-
consuming, and require significant lag times from initiation
to final results. Hence, there is growing interest in relying
on expert assessments of a study’s potential replicability to
provide rapid feedback. Several studies suggest that experi-
enced human experts can conclude from the content of the
original paper about which findings are likely to replicate,
often relying on the findings and the associated supporting
evidence (Dreber et al. 2015; Gordon et al. 2020; Fraser et al.
2021). Naturally, these human assessments when paired with
advances in machine learning offer the tantalizing possibil-
ity of real-time inference of the replicability of published
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research (Forsell et al. 2019; Wu et al. 2021). For example,
Altmejd et al. examined several black-box statistical mod-
els that make binary replication predictions based on fea-
tures representing statistical experimental design and result
properties, outcomes, citation counts, author metrics, and
subjects. Yang, Youyou, and Uzzi further integrated narra-
tive text into a neural model. Most recently, the DARPA
Systematizing Confidence in Open Research and Evidence
(SCORE) program (Alipourfard et al. 2021) launched an
effort to build comprehensive models for the prediction of
replicability through data collected from systematically con-
ducted re-experiments and experts’ annotations.

In this paper, we present RES, an interactive, intelligent,
and publicly accessible system that provides real-time auto-
mated estimation of replicability. The RES makes three con-
tributions: 1) It exploits a more exhaustive set of features
and leverages a larger training set; 2) It supplies more trans-
parency to the estimation model via explainable results; 3)
It supports the sentiment analysis of mentions in subsequent
publications, which offers valuable opinions from experts in
the research fields.

The RES System
In this section, we detail the design and features of the RES.
The RES is built with Bootstrap , which provides an easy-to-
use interactive web-based user interface. The system takes a
CSV file that contains the publication’s title, digital object
identifier, and testing claims as input. Then, the system exe-
cutes each module and displays associated information upon
the user’s request, as illustrated in Figure 1.

Replicability Estimation
To estimate the replicability of research publications, we ex-
ploited an extensive set of intrinsic and extrinsic features as-
sociated with each publication. Intrinsic features represent
the publication’s content, experimental design, associated
results, and scientific claims. Intrinsic features typically for-
malize a fundamental profile of the research that determines
its replicability, and they can be extracted directly from the
content of the research publication. In addition to the tex-
tual claim content input by the user, the RES also extracts
content directly from the publication through FREX 1, an

1https://github.com/amm-kun/score psu
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Figure 1: RES System Pipeline.
.

Type Category Source Representing Features

Extrinsic
Bibliometrics Semantic Scholar

or Google Scholar
Citation Count, Citation Velocity, Influential Citation Count

Author Profile Total Publications, Total Citations, h-index
Venue Profile SCOPUS Scholarly Output, Source Normalized Impact, Journal Ranking

Intrinsic Experiment Statistics FREX Significance, p-value, Sample Size
Textual Content User Input Claim Abstract, Hypothesis, Test Specifications

Table 1: Features used for the estimation of replicability

open-source information extraction package developed un-
der the SCORE program. Extrinsic features are subjective
facts that suggest the influence of the research publication
and the academic community’s evaluation of the research
publication. Extrinsic features are usually indirect clues of
the research’s replicability, and they can be retrieved through
querying databases like Semantic Scholar , Google Scholar
, and SCOPUS2. We categorized intrinsic and extrinsic fea-
tures into five different types and listed their source as well
as representing features in Table 1. The RES provides a look-
up table that contains detailed feature explanations through
its GUI. After feature preparation, the RES feeds those data
to the trained replicability estimation model. The model con-
sists of a neural structured data regressor and a pretrained
language model SciBERT (Beltagy, Lo, and Cohan 2019)
. We trained the replicability estimation model with 2,400
samples containing the same set of features as described in
Table 1 and annotations of replicability scores made avail-
able through the SCORE program (Fraser et al. 2021) as
the ground truth label. The training objectives of the model
are minimizing the mean squared error and maximizing the
ranking correlation. The model achieved 0.137 RMSE and
0.32 Spearman ranking correlation on the test set.

Explainability

The explainability component aims at providing trans-
parency to the RES. Two modules, the clause explanation
module and counterfactual explanation module, collaborate
together to offer explanation for textual and metadata fea-
tures.

Attribution of recurrent neural network predictions
via additive decomposition The clause level explanation
module is built upon REAT (Du et al. 2019), which is a post-
hoc explanation method. To explain the system decision at
clause level, we take a text claim and a pre-trained model as
input. The explanation result will be presented in the form
of a heatmap, where the color represents the direction and
the depth of the color indicates the contribution.

2https://www.scopus.com/

Understanding Black-Box Model Predictions by Coun-
terfactual Explanation The counterfactual explanation
module is built upon DiCE (Mothilal, Sharma, and Tan
2020), which explains the decision of ML-based systems
via counterfactual examples. Using metadata features and a
trained model as input, RES can effectively deliver various
counterfactual examples to the users. In addition, the inter-
active GUI allows users to explore possible model decisions
through customised meta-features. Moreover, RES pro-
vides contrastive explanation implemented based on (An-
jomshoae, Främling, and Najjar 2019). Taking a sample and
its counterfactual example, our method compares the scram-
bled features in terms of contextual importance and utility.

Downstream Sentiment Analysis
We implemented an auxiliary downstream sentiment analy-
sis module to provide the user with additional insights for
assessing the research publication’s replicability. The mod-
ule extracts and analyzes textual mentions of the targeting
research publication in papers that have cited it. Specifically,
We annotated 3,060 downstream mentions based on their
replicability-oriented sentiments and trained a SciBERT-
based model that can classify a downstream mention into
one of the following three classes: Positive, Negative, and
None sentiment. According to the evaluation on a holdout
set, the model achieved 0.7419 Macro F1.

Conclusions and Future Work
We built an interactive, intelligent, and publicly accessible
system that estimates replicability with more features, more
samples, better explainability, and the capability of analyz-
ing downstream mentions. In the future, we will adapt RES
to domains beyond the field of social and behavioral sci-
ences. We will also improve our models for better estimation
performance and transparency.
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