
Portability and Explainability of Synthesized Formula-based Heuristics

Vadim Bulitko, Shuwei Wang, Justin Stevens, Levi H. S. Lelis
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

{bulitko, shuwei4, jdsteven, santanad}@ualberta.ca

Abstract

Heuristic search is a key component of automated planning
and pathfinding. It is guided by a heuristic function which es-
timates remaining solution cost. Traditionally heuristic func-
tions for pathfinding have been human-designed or pre-
computed for a specific search graph. The former tend to
be compact, human-readable but generic. The latter offer
better guidance but require per-graph pre-computation and
have a substantial memory cost. We aim to retain compact-
ness and readability of human-designed heuristics and in-
crease their performance. We adopt the recently published
approach of representing heuristic functions as algebraic for-
mulae and automatically synthesizing them for video-game
maps. Whereas published work merely randomly sampled
the space of formula-based heuristic functions, we implement
and evaluate a parameterized synthesis algorithm that unifies
and generalizes the stochastic sampling, simulated anneal-
ing and a basic genetic algorithm. We tune the parameters
for better synthesis performance and then, using maps from
multiple video games, show that heuristics synthesized for
maps from one game still outperform the baseline search (A*
with weighted Manhattan distance) on maps from a differ-
ent game. We analyze a frequently synthesized formula and
explain how, despite having a higher error than the Manhat-
tan distance, it takes advantage of the structure in video-game
pathfinding problems and speeds up A*.

1 Introduction
Heuristic search is effectively used in automated planning. A
classical heuristic search algorithm such as A* (Hart, Nils-
son, and Raphael 1968) explores a given weighted graph to
find a lowest-cost solution between two given vertices. In
doing so A* explores the graph by expanding vertices and
evaluating vertices in their immediate neighborhoods. The
search effort is commonly measured in the number of states
expanded. The exploration of the search graph is guided by
a heuristic function (or a heuristic) which attempts to pre-
dict the remaining cost of a path from a given vertex to the
goal vertex. Generally speaking, more accurate heuristics re-
duce the search effort by guiding the search algorithm in the
promising direction. Thus efficiency of heuristic search sub-
stantially depends on the quality of the heuristic used, creat-
ing the problem of designing high-quality heuristics.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Traditionally heuristics have been either manually de-
signed or pre-computed for a specific graph (e.g., memory-
based heuristics). The former tend to be simple and generic
which makes them applicable to a broad class of search
graphs. However, their accuracy can be low due to their sim-
ple and generic nature which causes heuristic search algo-
rithms to expend extra effort while searching. On the other
hand, heuristics pre-computed for specific search graphs
yield good search performance by capturing specifics of a
graph (Björnsson and Halldórsson 2006; Sturtevant et al.
2009; Culberson and Schaeffer 1998; Korf and Felner 2002;
Felner et al. 2007; Korf 1997; Edelkamp 2001). The down-
side is their lack of portability and a large memory cost.

Recent work (Bulitko, Hernandez, and Lelis 2021) at-
tempted to combine the simplicity and portability of manu-
ally designed heuristics with the higher search performance
of per-graph pre-computed heuristics. It did so by synthesiz-
ing formula-based heuristics which can be complex enough
to potentially capture some specifics of a search graph but
still simple enough to have a negligible memory cost and
effectively apply to different graphs. The simplicity of syn-
thesized heuristics was achieved implicitly through (i) defin-
ing a space of heuristics as algebraic formulae generated by
a compact context-free grammar and (ii) sampling the space
randomly. Each sampled formula was generated by mutating
a random single-terminal formula up to a fixed number of
times. The randomly chosen mutation operations could both
grow the formula and shrink it which effectively limited the
overall size and complexity of the resulting formulae.

This paper builds on the published work (Bulitko, Her-
nandez, and Lelis 2021) and makes the following contri-
butions. First, we implemented a parameterized algorithm
which unifies and generalizes the stochastic sampling, simu-
lated annealing and a genetic algorithm. The latter two allow
the synthesis process to accumulate mutations over time, po-
tentially producing larger and more complex heuristic for-
mula which can capture more specifics of a search graph.
The generalized synthesis algorithm is enhanced with pro-
gressive candidate evaluation, called triage by Bulitko, Her-
nandez, and Lelis (2021).

Second, we illustrate how a commonly synthesized
heuristic makes A* expand substantially fewer states than
the Manhattan distance despite having a higher error rela-
tive to the perfect heuristic. We also demonstrate how the

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

29



formula-based representation of a synthesized heuristic can
enable a straightfoward way to establish a solution subopti-
mality bound. The third contribution of this paper is an em-
pirical study of portability of synthesized heuristics across
different search graphs. Unlike the published work (Bulitko,
Hernandez, and Lelis 2021), we used two different classes of
video-game maps as our search graphs and considered how
heuristics synthesized for one class of maps can be helpful
for another class. We showed that synthesized heuristics ap-
pear to capture and take advantage of the maps they were
synthesized for. Yet, they are portable enough to outperform
the baseline search even on maps from a different game.

Please contact us for our code (C++/MATLAB) and data.

2 Problem Formulation
We tackle the same synthesis problem as Bulitko, Hernan-
dez, and Lelis (2021), reproduced below for the reader’s
convenience. We first define notation related to heuristic
search on graphs and then frame synthesis of heuristic func-
tions as an optimization problem.

A graph search problem p is defined by a tuple
(G,s0, sg). Here G = (S,E, c) is the search graph. A
state si ∈ S is connected to its neighbor sj via an edge
(si, sj) ∈ E with a cost c(si, sj) > 0. The neighborhood
of state s is N(s) = {s′ ∣ (s, s′) ∈ E}. A state is expanded
by a heuristic search algorithm when its N(s) is computed
and evaluated. The state s0 is the initial state and sg is the
goal state. A solution to a graph search problem is a path
(s0, s1, . . . , sg) such that any pair (si, si+1) ∈ E. The cu-
mulative cost of all edges on a solution path is the solution
cost. The solution suboptimality α is the ratio of the solution
cost to the lowest possible solution cost for problem p, de-
noted by c∗(p). Solution suboptimality α = 1 indicates an
optimal solution while α = 2 indicates a path twice as costly
as optimal. Lower suboptimality values indicate lower-cost
solutions and are thus preferred. Heuristic search algorithms
employ a heuristic function h to guide their exploration of
the search graph in an attempt to find a lower cost solution
faster. The value of h(s) is a cost estimate of the lowest-cost
path from s to sg .

The synthesis problem we tackle is a procedural genera-
tion of a heuristic function that maximizes search algorithm
performance on a set of search problems. This can be viewed
as an optimization problem of minimizing a loss function
hmin = argmin

h∈H
`(a, h,P ) where a is a search algorithm,

H is a space of heuristic functions, P is a set of search
problems and ` is a loss function. For instance, the set P
can consist of all pathfinding problems on a given video-
game map. The loss ` is the ratio of the average number of
states expanded using h to the average number of states ex-
panded by a baseline. To illustrate, a (non-regularized) loss
of 0.5 means that the search algorithm a with the heuristic
h expanded half the nodes expanded by a with the base-
line heuristic while finding solutions of the same quality
(so a speed-up of 2 times). Here we used the same inter-
polation and averaging process as Bulitko, Hernandez, and
Lelis (2021). Note that during the synthesis process we reg-
ularize the loss to bias the synthesis towards more compact

heuristic formula. Post-synthesis we compute the test loss
without regularization.

Additionally we will study how robust a heuristic synthe-
sized for one set of problems is with respect to a different
set of problems. Formally, we define degradation of heuris-
tic h performance as D(a,P, hP , P ′, hP ′) = `(hP , a, P ′) −
`(hP ′ , a, P

′
) where the heuristic hP is synthesized for the

problem set P but its loss `(hP , a, P ′) is computed on
a different problem set P ′ and is compared to the loss
`(hP ′ , a, P

′
) of a heuristic hP ′ synthesized specifically for

P ′. Low degradation means high portability of the heuristic.

We prefer a solution to the synthesis problem formulated
here which is automated, can reasonably run on a single
commodity computer but can also take advantage of a clus-
ter, produces short human-readable heuristics with low loss
and low degradation across video-game maps.

3 Related Work
The search space of heuristic functions lacks a factored rep-
resentation such as the space of parameters of a general-
ized LRTA* algorithm (Bulitko 2016). Consequently, the
tabulated parameter sweep used by Bulitko (2016) would
not apply. A popular program synthesis approach, bottom-
up search, uses small programs as building blocks for
larger programs (Albarghouthi, Gulwani, and Kincaid 2013;
Udupa et al. 2013). Uninformed bottom-up search gener-
ates all programs of a certain size before generating pro-
grams of a larger size. In practice the grammar defining the
program space can have a large branching factor (e.g., our
grammar has 97 terminal symbols) which renders synthe-
sizing even a moderately sized program in the bottom-up
fashion intractable both time- and memory-wise. Informed
bottom-up search can require days of training on GPU (Shi
et al. 2021) while we desire to synthesize high-performance
heuristics in at most a few hours. Additionally Shi, Bieber,
and Singh (2020), Odena et al. (2020) and Shi et al. (2021)
considered program synthesis with the task specification
given by input/output pairs which we do not have.

Recent work on heuristic synthesis has used a simple ran-
dom sampling (Bulitko, Hernandez, and Lelis 2021; Hernan-
dez and Bulitko 2021) and a basic genetic algorithm (Bulitko
2020). The former is simple and fast but does not accumu-
late mutations over time and is thus unable to incrementally
build up complexity of the synthesized heuristics. The latter
can accumulate mutations but can produce very long formu-
lae which are difficult to interpret and analyze. Additionally
the genetic algorithm has more hyperparameters requiring
more domain-specific tuning.

4 Our Approach
We address the problems with related work as follows. To
avoid the high computational complexity of the systematic
bottom-up search we explore the space of heuristic formu-
lae stochastically. To enable more complex synthesized for-
mulae we allow accumulation of mutations. To prevent the
formulae from becoming too complex we regularize their
performance loss with the formulae size. Finally, to include

30



previous algorithms in the study we propose a simple syn-
thesis algorithm that unifies and generalizes the previously
used stochastic sampling, simulated annealing with history
and a basic genetic algorithm (Adler 1993). It is controlled
by hyperparameters which we tune algorithmically for the
domain at hand which allows us to explore effects of the
control parameters (e.g., the temperature in the simulated an-
nealing) beyond the original algorithms. This can be viewed
as a metaheuristic optimization (Yang 2011).

The proposed synthesis algorithm thus combines the fol-
lowing six techniques: (i) stochastic sampling of the for-
mula space (Bulitko, Hernandez, and Lelis 2021; Hernan-
dez and Bulitko 2021), (ii) accumulating mutations (Kirk-
patrick, Gelatt, and Vecchi 1983; Bulitko 2020), (iii) prob-
abilistic acceptance of candidates (Kirkpatrick, Gelatt, and
Vecchi 1983; Alur et al. 2013), (iv) maintaining a population
of promising formulae (Bulitko 2020), (v) progressive eval-
uation of candidates (Bulitko, Hernandez, and Lelis 2021)
and (vi) using previously synthesized formulae as building
blocks (Bulitko, Hernandez, and Lelis 2021; Albarghouthi,
Gulwani, and Kincaid 2013; Udupa et al. 2013).

4.1 Multiple Synthesis Trials
As Bulitko, Hernandez, and Lelis (2021), we parallelize the
synthesis at multiple scales. Each candidate heuristic from
the heuristic space H is evaluated with the search algorithm
on multiple problems in parallel, taking advantage of multi-
ple cores on a single computer. At the same time the synthe-
sis process can be run multiple times or trials across several
computers (e.g., cluster nodes) in parallel, followed by se-
lecting the best synthesized heuristic among them.

We run T independent synthesis trials in parallel in line 1
of Algorithm 1. Each trial t calls the function trial which
uses our synthesis algorithm (Section 4.2) to synthesize a
heuristic ht with its regularized loss lλt measured on the
training set Ptrain3. The output of the parallel process is then
the synthesized heuristic h with the lowest loss (line 4).

We regularize the loss function with the size of the heuris-
tic formula to control formula complexity and maintain
human-readability as well as prevent overfitting to the set
of training problems used during synthesis. Thus, instead of
the loss `(a, h,P ) used in previously published work we use
`λ(a, h,P ) = `(a, h,P ) + λ∣h∣ where ∣h∣ is the number of
vertices in the syntax tree representing the heuristic h (Bu-
litko, Hernandez, and Lelis 2021) and λ is the regularizer
constant. We omit λ when clear from the context.

Algorithm 1: Parallel multi-trial synthesis
input : training problem sets Ptrain1, Ptrain2, Ptrain3, heuristic

space H , per-trial synthesis budget b, regularized
loss function `λ, number of trials T , search
algorithm a

output: synthesized heuristic h
1 for t = 1, . . . , T in parallel do
2 ht ← trial(b,H, `λ, Ptrain1, Ptrain2, a)

3 lλt ← `λ(a, ht, Ptrain3)

4 return h = argmint l
λ
t

Algorithm 2: Single synthesis trial
input : training problem sets Ptrain1, Ptrain2, heuristic space

H , synthesis budget b, loss function `, regularizer
λ, search algorithm a, population size n, number
of champions c, number of survivors s,
temperature τ , flag δ

output: the lowest synthesized heuristic seen hhistoric best
assert : c ≤ n, s ≤ c

1 h1,...,n ∼H
2 h◇1,...,c ← h1,...,c

3 l◇1,...,c ← (∞, . . . ,∞)
4 lhistoric best ←∞

5 repeat
6 h′1,...,c ← best-of`λ(a,hi,Ptrain1)

(h1,...,n)

7 h◇1,...,c ← sortl◇(h◇1,...,c)
8 for i = 1, . . . , c do
9 h◇1,...,c, l

◇

1,...,c ←

insert(h◇1,...,c, l
◇

1,...,c, h
′

i, `
λ
(a, h′i, Ptrain2), τ)

10 if min
i=1,...,c

l◇i < lhistoric best then

11 lhistoric best ← min
i=1,...,c

l◇i

12 hhistoric best ← h◇argmin
i=1,...,c

l◇
i

13 if δ then
14 h1,...,s ← h◇1,...,s
15 hs+1,...,n ← offspring(h◇1,...,c)
16 else
17 h1,...,n ∼H

18 reduce τ
19 until b is exhausted
20 return hhistoric best

4.2 A Single Synthesis Trial
Henceforth we use x1,...,k as a shorthand for (x1, . . . , xk).
We start with a population of n heuristics randomly drawn
from the heuristic space H in line 1 of Algorithm 2. The
algorithm maintains champions, c heuristics and their reg-
ularized loss values, as the collections (h◇1, . . . , h

◇
c) and

(l◇1 , . . . , l
◇
c ) or h◇1,...,c and l◇1,...,c for short. Initially the cham-

pions are set to the first c members of the heuristic popula-
tion (line 2) and their loss values are all set to∞ (line 3).

Then, as long as the synthesis budget of b states expanded
is not exhausted by running the search algorithm a, we run
the following loop. First, in line 6 each heuristic hi in the
population h1,...,n has its regularized loss `λ(a, hi, Ptrain1)

computed on the small training set Ptrain1. Then the c heuris-
tics with the lowest loss become candidates to be the new
champions, denoted by h′1,...,c. This step implements filter-
ing within triage of Bulitko, Hernandez, and Lelis (2021).

Second, in lines 8 – 9 we probabilistically merge the exist-
ing champions h◇1,...,c with the candidate champions h′1,...,c
based on their regularized loss computed on the larger train-
ing set of problems Ptrain2. We first sort the existing champi-
ons by their regularized loss l◇ (line 7). Then we insert each
candidate champion h′i into the collection of existing cham-
pions in line 9. The insertion (Algorithm 3) takes the cham-
pions h◇1,...,c and a candidate champion h′i with its regular-

31



ized loss `λ(a, h′i, Ptrain2) computed on the larger training set
Ptrain2. It then probabilistically inserts it into the collection of
champions by comparing it to j-th champion (line 2) (Zgier-
ski 1993). If the candidate is accepted then it is inserted in
front of the j-the champion (line 3) together with its loss
(line 4). Note that the collection of champions retains its
size of c elements. To do so we discard the worst (i.e., c-
th) champion in C, h◇c , and its loss l◇c upon each insertion.
Thus the procedure resembles an insertion sort algorithm but
with a probabilistic comparison and a bounded array size.

Algorithm 3: Probabilistic insert
input : champions h◇1,...,c, l

◇

1,...,c, candidate champion h
and its regularized loss l, temperature τ

output: updated champions h◇1,...,c, l
◇

1,...,c

1 for j = 1, . . . , c do
2 if accept(l, l◇j , τ) then
3 h◇1,...,c ← (h

◇

1, . . . , h
◇

j−1, h, h
◇

j , h
◇

j+1, . . . , h
◇

c−1)

4 l◇1,...,c ← (l
◇

1 , . . . , l
◇

j−1, l, l
◇

j , l
◇

j+1, . . . , l
◇

c−1)

5 break

6 return h◇1,...,c, l◇1,...,c

This insertion uses a test accept(lcandidate, lexisting, τ)
which returns true with the probability p:

p =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if lcandidate < lexisting

e−
lcandidate−lexisting

τ otherwise.

A better/lower loss value lcandidate is always accepted. If the
candidate value is worse/higher then we are the less likely to
accept the worse it is. Here τ > 0 is the temperature, grad-
ually reduced over time by multiplying it by a constant at
each step (line 18 in Algorithm 2). As the temperature τ
tends towards 0, the probability of accepting a new cham-
pion with a higher/worse loss tends to 0 as well. In the ex-
treme case of τ = 0 the probability of accepting a champion
with a higher/worse loss is set to 0.

Third, we update the best heuristic seen so far, hhistoric best,
in lines 10 through 12. We replace hhistoric best and its regular-
ized loss lhistoric best with that of the best champion if its loss
is better. Initially lhistoric best is set to∞ in line 4.

Fourth, we form the next generation. If cumulative mu-
tations are enabled (i.e., δ = true) then the lowest-loss
s champion heuristics h◇1,...,s are kept in the population
in line 14. The rest of the population, the heuristics hs+1
through hn, are generated as offspring of the champions
h◇1,...,c in line 15. Each of the offspring heuristics is cre-
ated by picking a random parent among h◇1,...,c and mutat-
ing it randomly with a set of mutations similar to those used
by Bulitko, Hernandez, and Lelis (2021).

If cumulative mutations are not allowed (δ = false) then
the new population of n heuristics are drawn randomly from
the spaceH in line 17 and the next iteration begins. Once the
budget is exhausted the best heuristic seen during synthesis,
hhistoric best, is returned.

By design, several existing algorithms are special cases
of the algorithm above. To get the triage-enabled stochastic

sampling (Bulitko, Hernandez, and Lelis 2021) we set the
population size n to their triage ratio t. We set the number
of champions c = 1 and the number of survivors s = 0. The
temperature τ = 0, there is no regularization (λ = 0) and
no cumulative mutations (δ = false). To get triage-enabled
simulated annealing that remembers the historic best we set
n = t, c = 1, s = 0, τ > 0, λ = 0, δ = true. Finally, for a
basic genetic algorithm with triage and elitism the control
parameters are c ≥ 1, n = c ⋅ t, s = c, τ = 0, λ = 0, δ = true.

There are many valid combinations of the control parame-
ters beyond the three basis configurations. We speculate that
the parameters interact and thus a well performing configu-
ration is problem-specific. Consequently we tune them via a
parameter sweep on a set of problems.

5 Empirical Evaluation
We evaluated our new synthesis algorithm on video-game-
style grid pathfinding (Sturtevant 2012) which is a widely
used testbed for heuristic search. We chose a total of 24
maps from two games: Dragon Age: Origins (DAO) and
StarCraft (SC) to represent both outdoor and indoor gaming
environments. To study portability of synthesized heuristics
we formed two sets -A and -B of six maps from each game.
Thus we had four sets of six maps each: DAO-A, DAO-B,
SC-A and SC-B.

In line with previous work, each map was treated as a rect-
angular grid of binary (open/obstacle) grid cells. Each cell
was connected to its four cardinal neighbors and all edge
costs were 1. We added a single-cell obstacle border to each
map unless it was already bordered. To generate pathfinding
problems on a map we computed the largest connected com-
ponent of the map and then randomly placed ngoals distinct
goals in it. For each goal we then placed nstarts distinct start
states in the connected component.

Our loss function was defined with respect to the baseline
algorithm a = A* with weighted Manhattan distance as in
the previous work (Bulitko, Hernandez, and Lelis 2021).

5.1 Base Space of Heuristic Functions
We adopted a previously published (Bulitko, Hernandez, and
Lelis 2021) representation of heuristics via algebraic for-
mulae with slight modifications. Specifically we defined the
heuristic space as H = {h(x, y, xg, yg) = F} where (x, y)
is the state for which the heuristic value is computed and
(xg, yg) is the goal state. The formula body F is generated
by the following context-free grammar:

F → T ∣∣∣ U ∣∣∣ B

T → x ∣∣∣ xg ∣∣∣ y ∣∣∣ yg ∣∣∣∆x ∣∣∣∆y ∣∣∣ C

U →

√

F ∣∣∣ ∣F ∣ ∣∣∣ −F ∣∣∣ F 2

B → F + F ∣∣∣ F − F ∣∣∣ F × F ∣∣∣
F

F
∣∣∣max{F,F} ∣∣∣min{F,F}

Here ∆x = ∣x − xg ∣, ∆y = ∣y − yg ∣ and C ∈

{1.0,1.1,1.2, . . . , 10.0} (in the published work (Bulitko,
Hernandez, and Lelis 2021) C ∈ {1,2, . . . , 6}). The space
includes the standard/weighted Manhattan distance w ×
(∆x +∆y) as it is expressible in the grammar.

32



5.2 Synthesis Hyperparameters
In order to choose parameters controlling our synthesis al-
gorithm we ran a number of preliminary experiments for
which we formed the problem set Ptrain1 from 3×3 = 9 prob-
lems (3 goals with 3 start states for each) and Ptrain2 from
10 × 10 = 100 problems. Each of these two training sets
was generated randomly on each synthesis trial. The train-
ing set Ptrain3 was fixed for all synthesis trials and consisted
of 100 × 100 = 104 problems. The test set Ptest consisted of
200 × 200 = 4 × 104 problems, fixed for all synthesis trials.

We first set the regularizer λ = 10−3 and the tempera-
ture decay factor to 0.99. Then to choose the cumulative
mutation flag δ we compared the test loss of synthesized
heuristics with δ = false and δ = true. The former case corre-
sponds to the published work (Bulitko, Hernandez, and Lelis
2021) so we adapted their experimental parameters and set
s = 0, c = 1, λ = 0, τ = 0, n = 20. For each of the six DAO-A
maps we then ran Algorithm 1 with 160 trials and the synthe-
sis budget 108 on each trial. The test loss of the six synthe-
sized heuristics ranged from 0.37 to 0.64 (mean 0.54) which
is comparable to [0.29,0.62] (mean 0.49) reported by Bu-
litko, Hernandez, and Lelis (2021).* Repeating the same ex-
periments with cumulative mutations enabled (δ = true) we
obtained the test loss in the range [0.37,0.55] (mean 0.49)
which suggests that cumulative mutations may have the po-
tential to produce heuristics with higher performance in the
worst case (maximum test loss of 0.55 versus 0.64). Thus
we allowed accumulation of mutations henceforth.

We then moved to choose the number of survivors s, the
initial temperature τ and the number of champions c by run-
ning a parameter sweep. Given the large number of configu-
rations we ran 16 trials on each of the six maps in DAO-A
and each of the six maps in SC-A. Each trial had the node-
expansion budget of 108. Figure 1 shows the test loss aver-
aged over the twelve maps for each parameter combination.

Figure 1: Test loss averaged over DAO-A and SC-A.

The results suggest that increasing the number of cham-
pions c leads to poorer synthesized heuristics. This is likely
due to the fact that each champion candidate is evaluated
on the larger training problem set Ptrain2 (line 9 in Algo-
rithm 2). Evaluating a heuristic on a larger problem set con-
sumes more of the node-expansion budget for A*. There-
fore, the higher the c the faster the budget is exhausted and

*We attribute the differences to the stochastic nature of the
synthesis process, randomly generated problem sets and the dif-
ferences in our grammar.

the fewer generations of the synthesis can be run. While ef-
fects of the initial temperature τ or s = 0 versus s = c are
less pronounced we ended up selecting s = c = 1 and τ = 0.1
for the rest of our empirical evaluation.

5.3 Synthesis with the Base Grammar
Having selected the control parameters for our algorithm,
we first paralleled Bulitko, Hernandez, and Lelis (2021) and
synthesized heuristics for the -A map sets. For each of the
six maps from DAO-A and each of the six maps from SC-
A we ran 160 synthesis trials with the parameters from Sec-
tion 5.2 and the synthesis budget of 5 × 108. For each of the
12 maps we selected the single synthesized heuristic with
the lowest regularized Ptrain3 loss. The heuristics and their
losses are listed in Tables 1 and 2.

Test loss Heuristic

0.4007 f1 =max{∆x ⋅
√

yg
x
,∆y}

4

0.3627 f2 =∆y + 44.9 ⋅max{∆x,∆y}

0.4494 f3 =max{
yg

(y−8.3)
⋅∆y,∆x}

2

0.4995 f4 =max{100.0,min{yg,∆y} + y}
2
⋅max{∆x,∆y}

0.4894 f5 =max{
√

(y +∆y)2 ⋅∆y ⋅ 11.5,∆x ⋅ yg}

0.4798 f6 =max{∆y,∆x +min{∆x,xg}}
2

Table 1: Synthesized heuristics for maps brc202d,
den000d, den501d, lak505d, orz103d, ost000a in DAO-
A, manually simplified for readability.

The test loss varied between 0.27 and 0.5 which means
that A* guided with these heuristics would expand 2 to 3.7
times fewer nodes than the baseline A* with the weighted
Manhattan Distance for the same solution quality.

5.4 Synthesis with the Enriched Grammar
We then synthesized heuristics for the map sets DAO-B
and SC-B. We compared synthesis with the base grammar
to synthesis with a grammar enriched by adding heuristics
previously synthesized for maps DAO-A or SC-A or both
as the additional terminal symbols. As we have two A-sets
of maps, we have three enriched grammars denoted by the
source of their additional terminal symbols: DAO-A, SC-A
and DAO-A + SC-A in Figures 2 and 3. For each of the
three enriched grammars and the original base grammar, we
ran three configurations of synthesis: 1 synthesis trial with
the synthesis budget of 108 expanded nodes and 4 and 16
trials with the budget of 5 × 108. We repeated the multi-trial
synthesis four times, averaged the four synthesis curves and
plotted their means and standard deviations in the figures.

As expected, enhanced grammars yielded synthesized
heuristics with lower losses, especially for lower synthe-
sis budgets. Running one synthesis trial for a map with
the synthesis budget of 108 expanded nodes with the en-
riched grammar DAO-A + SC-A took on average 1.6 min-
utes/map for DAO-B maps and 1.2 minutes/map for SC-B
maps. The resulting average loss was 0.48 and 0.41 respec-
tively which means that with the synthesized heuristics A*

33



Test loss Heuristic

0.2846 f7 =max{∆y,∆x} ⋅ xg +∆y

0.3539 f8 =max{
√
y +∆y,∆x}

2
+∆y

0.4711 f9 =∆x +max{∆y ⋅ 5.6,∆x}

0.3310 f10 =max{∆y ⋅
√
√√

∆y,∆x}
2

−∆y +∆x

0.4931 f11 =∆x +max{1.5 ⋅∆y,∆x} ⋅ 5.6

0.2679 f12 =max{∆y +
√
yg,∆x}

2

Table 2: Synthesized heuristics for maps Legacy, Rose-
wood, ShroudPlatform, SpaceAtoll, Triskelion, Warp-
Gates in SC-A, manually simplified for readability.

Figure 2: Synthesizing heuristics on the map set DAO-B.

produced solutions of equal quality 2.1 to 2.4 times faster
than the baseline. Increasing the synthesis budget to 5 × 108

expansions and the number of trials to 16 upped the time
to 119.5 and 91.7 minutes/map respectively but resulted in
A* speed-up of 2.4 and 3.7 times. The graphs suggest that
the test loss eventually plateaus which is likely due to lim-
itations of our grammar as well as the preference for more
compact formulae due to loss regularization.

Map Test loss Heuristic
brc100d 0.4850 f3
brc201d 0.4479 min {min {f6 − x, f10} , f7}

den505d 0.4634 max{max{ f1
f6
, f5} +∆x, f7}

lak100c 0.3459 f10
orz701d 0.3943 f7
orz702d 0.4051 min{f3

2, f1 + y}

Table 3: Heuristics synthesized for DAO-B with the DAO-
A + SC-A enriched grammar.

The best of the 16 trials (each with the budget of 5 × 108

node expansions) synthesized heuristics for -B set maps are
listed in Tables 3 and 4. They were synthesized with the
enriched grammar DAO-A + SC-A and thus had access
to all 12 building blocks fi previously synthesized on the

Figure 3: Synthesizing heuristics on the map set SC-B.

Map Test loss Heuristic

Aftershock 0.2483 max{ f3
1.3
, f5√

3.1
}

Archipelago 0.2209 f12
BigGameHunters 0.3315 max{f3, f5}

Brushfire 0.2190 f11 +∆y
Caldera 0.1545 f11 +∆y

CatwalkAlley 0.4160 f9

Table 4: Heuristics synthesized for SC-B with the DAO-A
+ SC-A enriched grammar.

-A maps (Tables 1 and 2). Unsurprisingly, these heuristics
synthesized with the enriched grammar are generally much
shorter formulae than those synthesized with the base gram-
mar only (Tables 1 and 2). This is likely because the building
blocks fi these formulae can incorporate are more power-
ful than the terminal symbols in the original base grammar.
Note that several -B set heuristics consist of a single build-
ing block only. The fact that some heuristics originally syn-
thesized for an A-map (e.g., f7 for a SC-A map Legacy)
surfaced as the historic best in the synthesis for a -B map
(in this case DAO-B map orz701d) promised cross-map
and even cross-game portability of synthesized heuristics.
We investigate such portability in the next section.

5.5 Portability of Synthesized Heuristics
A heuristic created for a given map has the potential to
capture map specifics and improve A* performance on that
map. At the same time, being specific to one map may neg-
atively affect A* search on another, substantially different
map. Tabular memory-based heuristics are a prime example
of such specificity, lacking portability across maps. Our per-
map-synthesized heuristics are algebraic formulae so any
heuristic is applicable to any map. In this section we em-
pirically study their performance degradations across maps.

We took the 12 heuristics synthesized for the -B maps
(Tables 3 and 4) and computed their test loss on the 12 maps
in the -B sets. We observe that portability on maps from the
same game is better than portability on maps from a differ-
ent game (the diagonal values in Table 5). Importantly, even

34



when tested on maps from a different game the synthesized
heuristics outperformed the baseline search (A* with the
weighted Manhattan distance) approximately 1.5 − 2 times
(test losses of 0.53 and 0.67 in the table).

Synthesis map set
Test map set DAO-B SC-B

DAO-B 0.61 0.53
SC-B 0.67 0.36

Table 5: Test loss across map sets. Best values are in bold.

How much performance do we give up by testing a heuris-
tic synthesized for a map on a different map? Table 6 shows
the loss degradation values averaged across maps within the
same game and a different game. Testing a heuristic synthe-
sized for one of the six maps in DAO-B on all six DAO-B
maps has the average loss degradation of 0.19 which is the
price for using a heuristic on another map within the same
game. SC-B heuristics are even more portable within the
game with the average degradation of merely 0.09. As ex-
pected with both DAO-B and SC-B heuristics, their degra-
dation was higher when used on maps from a different game.

Synthesis map set
Test map set DAO-B SC-B

DAO-B 0.19 0.27
SC-B 0.25 0.09

Table 6: Degradation across map sets. Best values bolded.

We would like to draw three observations from these re-
sults. First, A*-guiding performance of a synthesized heuris-
tic generally degrades when it is used on a map different
from the map it was synthesized for. This suggests that
our synthesized heuristics do capture and take advantage of
map specifics. Second, the degradation is more severe across
different games which suggests that maps within a game
do have commonalities that our synthesized heuristics are
able to exploit. Third, despite the degradation, synthesized
heuristics still outperformed the baseline search even on for-
eign maps and foreign games.

5.6 Explainability of Synthesized Heuristics
Unlike heuristics expressed as large precomputed tables or
deep neural networks, our representation via compact al-
gebraic formulae has the potential for human readability.
This is beneficial since it can help communicate synthesized
heuristics and encourage their deployment for video-game
pathfinding in the field. Furthermore, readable synthesized
heuristics can give researchers ideas for other heuristics and
algorithms. Finally, human readability can facilitate theoret-
ical analysis such as deriving solution suboptimality bounds.

To illustrate, consider the heuristic h(x, y, xg, yg) =
max{∆x,∆y}2 = max{∣x − xg ∣, ∣y − yg ∣}

2 whose vari-
ants have been commonly synthesized and whose wall-
hugging behaviour was mentioned by Bulitko, Hernandez,
and Lelis (2021). This heuristic allows A* to find solutions

Figure 4: The synthesized h = max{∆x,∆y}2 causes A*
to hug the wall and expand fewer states than Manhattan dis-
tance ∆x +∆y.

Figure 5: Removing the square from h =max{∆x,∆y}2.

with the average suboptimality of 1.02 while expanding on
average 1767 states per problem on some 40 thousand test
problems on the DAO-A map den000d. This is 3.4 times
less search effort than A* with weighted Manhattan dis-
tance’s interpolated 6018 states expanded on average per
problem for the same average solution suboptimality.

To understand how this synthesized heuristic offers a bet-
ter guidance on this map consider the toy example in Fig-
ure 4. The agent is in the cell S looking for a path to cell
G. Each cell is labeled with its values of g, h, f = g + h.
Blackened cells are walls. With h being Manhattan distance
the agent expands all six cells whose f value is below f = 7
of the bottleneck cell marked with ⋆ (left subfigure). The
bottleneck is the state that any path to the goal must pass
through for this search problem. As ties among f are bro-
ken towards higher g the agent also expands four cells with
f = 7. A total of ten cells are expanded, shaded in light red.

The synthesized heuristic h =max{∆x,∆y}2 ignores the
smaller of the ∆x and ∆y terms (instead of adding them to-
gether as Manhattan distance does) and reduces the h value
non-linearly along a path. Guided by it, A* goes straight east
until it hits the wall (right subfigure). Hugging the wall, the
search will then expand to the goal. A total of eight cells are
expanded, shaded in light red.

In this toy example only two state expansions are saved.
Interestingly, these two cells (⊗ in the figure) would be ex-
panded by weighted A* for any value of the weight since
their g values 1 and 2 are below g = 3 of the bottleneck ⋆
and their h values 3,4 do not exceed that of the bottleneck
(4). Also note that removing the square from the synthesized
heuristic actually increases state expansions to 12 (Figure 5).

In practice the wall-hugging behaviour induced by the
synthesized heuristic can save many more expansions on
more realistic pathfinding problems. To illustrate, consider
the problem with the start state (x = 19, y = 177) and the
goal state (x = 410, y = 162) on the map den000d. Its op-

35



Figure 6: Comparing heuristic values and final closed lists
of the baseline (top row), A* with the synthesized heuristic
(middle row) and A* with the perfect heuristic h∗ (bottom
row). Final closed lists are shown in red. The white S and G
denote the start and goal. The weight w = 1.2969 for Man-
hattan distance was picked to match average suboptimality
of the synthesized heuristic.

timal solution has 652 steps (bottom right plot in Figure 6).
Visually, weighted Manhattan distance h = w(∆x + ∆y)
matches the perfect heuristic h∗ much better than the synthe-
sized heuristic (plots in the left column). However, weighted
Manhattan distance does not account for the obstacles and
combines ∆x and ∆y linearly. Consequently, it causes A*
to expand a large number of states throughout the map as
seen in its final closed list (top right plot). As a result, on
this problem A* with weighted Manhattan distance expands
39799 states to find a solution of 666 steps (α = 1.021).

The synthesized heuristic h = max{∆x,∆y}2 also does
not account for the map’s obstacles but it does induce a wall-
hugging behaviour in A* that saves many state expansions.
Indeed, on this problem A* expands 4.6 times fewer states
(middle right plot), yielding a solution of 668 steps (α =
1.025) found with only 8608 state expansions.

By not accounting for specific obstacles on the map (un-
like a pre-computed memory-based heuristic) the synthe-
sized heuristic causes A* to explore several dead-end cham-
bers closer to the goal which a perfect heuristic would
avoid (bottom right in the figure). However, a memory-based
heuristic pre-computed for this map would not work on an-
other map whereas the formula-based h = max{∆x,∆y}2

induces the wall-hugging behaviour useful on many maps.
Another advantage of automatically synthesized alge-

braic heuristic functions is that they can allow for a sim-
ple bounded-suboptimality analysis. For instance, solutions
A* finds while guided by the synthesized heuristic func-
tion h(s) =∆y+max{6.6∆y,7.7∆x} are guaranteed to be
no costlier than 7.7 times the optimal solution cost because
h(s) =∆y+max{6.6∆y,7.7∆x} ≤∆y+6.6∆y+7.7∆x ≤
7.7(∆y +∆x) ≤ 7.7h∗(s).

Another synthesized heuristic h(s) =max{∆y,∆x}xg+
∆y guarantees solution suboptimality no worse than xg + 1
times optimal because h(s) = max{∆y,∆x} ⋅ xg +∆y ≤
(∆y+∆x)xg +∆y ≤∆y(xg +1)+∆x ⋅xg ≤ (xg +1)(∆x+
∆y) ≤ (xg + 1)h∗(s).

Such bounds are more difficult to derive for less transpar-
ent heuristic representations such as deep neural networks.

6 Open Questions & Future Work

While we used video-game-map pathfinding as the testbed,
future work will consider other search spaces such as com-
binatorial puzzles and general planning (Yoon, Fern, and Gi-
van 2008). Furthermore, in this paper we synthesized heuris-
tics for a given search graph (i.e., per a video-game map).
Future work will synthesize heuristics for multiple search
graphs. Will increasing the number and diversity of graphs
for which a single heuristic formula is synthesized cause the
synthesis to converge to a one-size-fits-all heuristic?

Another direction for future work is to jointly synthesize
heuristic functions and heuristic search algorithms that use
them. In particular, one can synthesize the priority function
used to order the Open list in A* and see if the joint synthesis
can outperform synthesizing only a heuristic or only a prior-
ity function. One can compare synthesized priority functions
to human-designed ones (Chen and Sturtevant 2021).

As the synthesis space is made larger it will be even more
important to evaluate candidate heuristics efficiently. In this
paper we used a series of progressively larger problem sets
to discard poor heuristics quickly. An alternative is to use a
surrogate fitness function which does not involve running A*
with a heuristic at all. Recent work (Bulitko and Botea 2021)
used convolutional networks as a proxy fitness function in
the evolution of crosswords puzzles. Another possibility is
to use an error between a candidate formula-based heuristic
and the perfect table-based heuristic h∗ as the loss function.
While Section 5.6 shows that such errors may not align with
the resulting A* performance, the error may be used as a
part of the guidance of the synthesis process.

Future work will further investigate sensitivity of syn-
thesized formulae performance to hyperparameter values as
well as advanced automated tuning of the hyperparameters.
It will also be of interest to consider optimizations in eval-
uating the formulae representing heuristics as well as au-
tomatic simplification of such formulae. Finally, by adding
constraints to the synthesis process and/or modifying the
loss function one can attempt to synthesize combinations of
heuristic functions and heuristic algorithms that produce so-
lutions with better suboptimality bounds.

36



7 Conclusions
Traditionally heuristic functions for video-game pathfinding
have been either generic and manually constructed (e.g., the
Manhattan distance) and lacking A*-guiding performance
or pre-computed for each map and thus lacking portability
and human readability. Recent work (Bulitko, Hernandez,
and Lelis 2021) attempted to combine advantages of both
by automatically synthesizing heuristics represented by sim-
ple algebraic formulae. Since they are synthesized for each
map, there is a potential for higher performance by capturing
some specifics of the map.

While promising, that study left a number of important
questions which we attempted to answer here. First, we up-
dated their synthesis algorithm with cumulative mutations,
stochastic acceptance and regularization which allowed us
to investigate performance impact of the parameter combi-
nations. Second, we showed that the synthesized heuristics
appear to capture and take advantage of specifics of indi-
vidual maps within a game and a game as a whole. While
there is a degradation in performance when a heuristic syn-
thesized for a map is applied to a different map or even a
different game, on average the resulting performance is still
better than the baseline search. This is promising for game
developers since it would spare them from having to syn-
thesize a different heuristic for every map and thus would
allow to use pre-synthesized heuristics even on user-made
maps. Finally, the simple formula-based representation of
our synthesized heuristics can enable human readability and
analysis. To illustrate, we showed how a commonly syn-
thesized compact heuristic induces wall-hugging behavior
in A* and consequently substantially speeds it up. We also
demonstrated how simplicity of synthesized formula-based
heuristics can allow to prove suboptimality bounds.

Acknowledgments
We appreciate financial support from NSERC. We also ap-
preciate support from Compute Canada and consultation
from Jonathan Schaeffer. This research was partially funded
by Canada’s CIFAR AI Chairs program.

References
Adler, D. 1993. Genetic algorithms and simulated annealing: A
marriage proposal. In Proceedings of the IEEE International Con-
ference on Neural Networks, 1104–1109.
Albarghouthi, A.; Gulwani, S.; and Kincaid, Z. 2013. Recursive
program synthesis. In Proceedings of the International Conference
on Computer-aided Verification, 934–950.
Alur, R.; Bodik, R.; Juniwal, G.; Martin, M. M. K.; Raghothaman,
M.; Seshia, S. A.; Singh, R.; Solar-Lezama, A.; Torlak, E.; and
Udupa, A. 2013. Syntax-guided synthesis. In Proceedings of For-
mal Methods in Computer-Aided Design, 1–8. (a tutorial).
Björnsson, Y.; and Halldórsson, K. 2006. Improved Heuristics for
Optimal Path-finding on Game Maps. In Proceedings of the Artifi-
cial Intelligence and Interactive Digital Entertainment Conference
(AIIDE), 9–14.
Bulitko, V. 2016. Evolving Real-time Heuristic Search Algorithms.
In Proceedings of the International Conference on the Synthesis
and Simulation of Living Systems (ALIFE), 108–115.

Bulitko, V. 2020. Evolving Initial Heuristic Functions for Agent-
Centered Heuristic Search. In Proceedings of the IEEE Conference
on Games (CoG), 534–541.
Bulitko, V.; and Botea, A. 2021. Evolving Romanian Crossword
Puzzles with Deep Learning and Heuristic Search. In Proceedings
of the IEEE Conference on Games (CoG).
Bulitko, V.; Hernandez, S. P.; and Lelis, L. H. S. 2021. Fast Synthe-
sis of Algebraic Heuristic Functions for Video-game Pathfinding.
In Proceedings of the IEEE Conference on Games (CoG).
Chen, J.; and Sturtevant, N. R. 2021. Necessary and Sufficient Con-
ditions for Avoiding Reopenings in Best First Suboptimal Search
with General Bounding Functions. In Proceedings of the AAAI
Conference on AI, 3688–3696.
Culberson, J.; and Schaeffer, J. 1998. Pattern Databases. Compu-
tational Intelligence, 14(3): 318–334.
Edelkamp, S. 2001. Planning with Pattern Databases. In Proceed-
ings of the Conference on Planning, 13–24.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C. 2007. Com-
pressed pattern databases. Journal of Artificial Intelligence Re-
search, 30: 213–247.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2): 100–107.
Hernandez, S. P.; and Bulitko, V. 2021. Speeding Up Heuris-
tic Function Generation via Automatically Extending the Formula
Grammar. In Proceedings of the Symposium on Combinatorial
Search (SoCS).
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimization
by Simulated Annealing. Science, 220(4598): 671–680.
Korf, R.; and Felner, A. 2002. Disjoint pattern database heuristics.
Artificial Intelligence, 134(1–2): 9–22.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s Cube Us-
ing Pattern Databases. In Proceedings of the AAAI Conference on
Artificial Intelligence, 700–705.
Odena, A.; Shi, K.; Bieber, D.; Singh, R.; Sutton, C.; and Dai, H.
2020. BUSTLE: Bottom-Up program synthesis through learning-
guided exploration. In Proceedings of the International Conference
on Learning Representations.
Shi, K.; Bieber, D.; and Singh, R. 2020. TF-Coder: Program Syn-
thesis for Tensor Manipulations. In Proceedings of the NeurIPS
Workshop on Computer-Assisted Programming.
Shi, K.; Dai, H.; Ellis, K.; and Sutton, C. 2021. CrossBeam: Learn-
ing to Search in Bottom-Up Program Synthesis. In Proceedings of
the International Conference on Learning Representations.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based Pathfinding.
Transactions on Computational Intelligence and AI in Games, 4(2):
144 – 148.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and Burch,
N. 2009. Memory-Based Heuristics for Explicit State Spaces. In
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 609–614.
Udupa, A.; Raghavan, A.; Deshmukh, J. V.; Mador-Haim, S.; Mar-
tin, M. M.; and Alur, R. 2013. TRANSIT: Specifying Protocols
with Concolic Snippets. SIGPLAN Not., 48(6): 287–296.
Yang, X. 2011. Metaheuristic Optimization. Scholarpedia, 6(8):
11472. Revision #91488.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control Knowl-
edge for Forward Search Planning. Journal of Machine Learning
Research, 9(4).
Zgierski, J. R. 1993. On stochastic sorting. Ph.D. thesis, Carleton
University.

37


