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Abstract

The longest simple path and snake-in-a-box are combinatorial
search problems of considerable research interest. We create
a common framework of longest constrained path in a graph
that contains these two problems, as well as other interesting
maximum path problems, as special cases. We analyze prop-
erties of this general framework, and produce bounds on the
path length that can be used as admissible heuristics for all
problem types therein. For the special cases of longest sim-
ple path and snakes, these heuristics are shown to reduce the
number of expansions when searching for a maximal path,
which in some cases leads to reduced search time despite the
significant overhead of computing these heuristics.

1 Introduction
In the LSP problem the aim is to find the Longest Sim-
ple Path (where no vertex is visited more than once) be-
tween two given vertices in a graph. LSP is a fundamental
problem in graph theory, known to be NP-hard, and even
hard to approximate within a constant factor (Karger, Mot-
wani, and Ramkumar 1997). The motivation to solve LSP
comes from a variety of domains such as information re-
trieval on peer to peer networks (Wong, Lau, and King
2005), estimating the worst packet delay of Switched Eth-
ernet network (Schmidt and Schmidt 2010), multi-robot pa-
trolling (Portugal and Rocha 2010), and VLSI design where
the longest path should be found between two components
on a printed circuit board (Chen 2016).

Several prior works approached LSP as a heuristic search
problem. Stern et al. (2014) showed how to modify com-
mon heuristic search algorithms that were designed for min-
imization (MIN) problems to solve maximization (MAX)
problems. They used LSP to demonstrate their findings and
proposed an admissible heuristic for LSP. Then, Palombo
et al. (2015) proposed several admissible heuristics for solv-
ing the Snake-in-the-box (SIB) problem (Kautz 1958). SIB
is a reminiscent of LSP that is important for a useful type
of efficient error correction codes. IN SIB, a path may not
use neighbours of vertices that are already in the path. A
followup work (Cohen, Stern, and Felner 2020) focused on
LSP and proposed several methods to detect and prune states
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that are dominated by other states. In addition specific grid-
based heuristics for LSP were proposed.

This paper continues that line of research, making the
following contributions. We first define the Generalized
Longest Simple Path (GLSP) problem as finding the longest
possible path under a set of constraints on the behaviour of
that path. The problems mentioned above are special cases
of GLSP. A theoretical study on different properties of the
problem follows. In particular, we prove theorems about the
complexity of deciding path existence, with or without a
must-include set of vertices (that must be on a path) spec-
ified in the input. We then introduce methods for generating
admissible heuristics for GLSP based on exclusion sets and
must-include paths. We also extend the notion of pattern-
based heuristics for Snake-in-the-box (Palombo et al. 2015)
taken from a bi-connected projection of the graph to include
components that are not necessarily disjoint. Finally, we de-
scribe an implementation, including a new incremental im-
plementation of the heuristics. Empirical evaluation of our
heuristics on LSP and Snakes shows significant savings in
the number of expanded nodes compared to previous ap-
proaches. Frequently this translates into a reduced runtime
despite the increased overhead of our new heuristics.

2 Background
Solving the shortest-path problem using search typically in-
volves derivations of the A* algorithm. These are called
MIN problems as the task is to find a solution with the least
possible cost. In these problems one always prefers nodes
with lower f(n) = g(b) + h(n) values. But, in some cases
(such as LSP) solutions are needed with the maximal possi-
ble weight. These are called MAX problems. The following
modifications to textbook A* are needed to adapt it to MAX
problems and in particular to LSP (Stern et al. 2014).
Admissibility in MAX problems. A function h is said to
be admissible for MAX problems iff for every state n in the
search space it holds that h(n) is greater than or equal to
the remaining optimal weight to the goal (the length of the
longest simple path from N.head to g in the case of LSP).
Choosing from OPEN. In MIN problems, A* pops from
OPEN in every iteration the node n with the lowest g(n) +
h(n). In MAX problems, A* pops from OPEN in every iter-
ation the node n with the highest g(n) + h(n).
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Figure 1: A graph (left), its biconnected block-cut tree (center), and simplified SPQR tree of block C3 (right)

2.1 Graphs and Connectivity Types

Let G = (V,E,w) be a connected undirected weighted
graph with no self-edges. A path from v0 to vm is an alter-
nating sequence P = (v0, e0, v1, e1, ...vm) of vertices and
edges in G such that following elements in the sequence are
adjacent, i.e. each edge is incident on the preceding and fol-
lowing vertices in P . Path P is simple if no vertex appear
is P more than once. In this paper we aim at finding longest
paths under constraints - one such commonly used constraint
is that the path is simple. This case is called longest simple
path (LSP) problem.

G is connected if for every pair of vertices w, v ∈ V there
is a path fromw to v inG. Obviously the longest simple path
cannot have more edges than the number of vertices inGmi-
nus one. Deciding whether the length of a simple path actu-
ally equals this bound is known as the NP-complete Hamil-
tonian path decision problem (Garey and Johnson 1979).
This paper is about search for longest paths, and different
notions of k-connectivity (see below) play a crucial role in
designing admissible heuristics for this search. We assume
that search progresses from a start vertex s by adding one
edge and vertex at a time to a partial path P that has s′ as a
last vertex. A trivial admissible heuristic (bounding the max-
imum number of vertices by which P can be extended) is hr,
the number of vertices in the connected component in which
s′ resides at in the remaining graph, G− P .

Path search literature (Cohen, Stern, and Felner 2020)
uses in addition the notion of 2-connectivity (also called bi-
connectivity): G = (V,E) is (vertex-wise) biconnected if
for every v ∈ V , G − {v} is connected. In other words,
there are at least two disjoint paths between any two vertices
in a bi-connected component. A biconnected component of
G is any maximal subgraph of G that is biconnected. Ev-
ery pair of biconnected components G1, G2 has at most one
vertex v in common; which is called an articulation point, or
a separator. A graph consisting of one block-vertex V (Gi)
representing each connected componentGi ofG, one vertex
v for each separator, and an edge between v and V (Gi) just
when the separator v ∈ Gi is known as the block-cut graph
of G. For example, Figure 1 shows a graph (left), with two
separators: y and x, splitting the graph into 3 biconnected
blocks; and the corresponding block-cut tree (center).

A more general definition of connectivity used in this pa-
per is k-connectivity. Graph G is (vertex) k-connected if
there is no set of vertices S of size k − 1 which discon-
nect G, when removed. Such graphs have at least k vertex-
disjoint paths between any two vertices. Here we mostly use
3-connectivity, also called triconnectivity, to develop admis-
sible heuristics. In a biconnected graph, a pair of vertices is
called a separation pair if deleting it makesG disconnected.
Triconnected components are maximal subgraphs that are
3-connected. A biconnected graph can be organized into a
tree-like structure of triconnected components and separa-
tion pairs, known as an SPQR tree (Battista and Tamassia
1996). SPQR trees have many technical details, one must
read the cited paper to fully understand them. Here, we
describe details essential to our work. SPQR trees consist
of super-vertices of 4 types; each super-vertex represents a
graph fragment.R (”Rigid”) super-vertices represent tricon-
nected components. P (”Parallel”) super-vertices represent
a separator pair that separates the graph into three or more
components. S (”Series”) super-vertices represent a series
of vertices. Q super-vertices represent individual edges (not
used in this paper). See Figure 1 (right) for an SPQR tree
of block C3, which contains all vertices between x and t.
The pair x, t gives rise to a super-vertex of type P (par-
allel separator-pair) which separates the graph into 3 com-
ponents, each of type S. In the figure, for each S super-
vertex the sequence of vertices are listed in the parenthe-
sis. The S vertex with the ui vertices contains separator pair
u1, u2, giving rise to a P super-vertex, which abuts a tricon-
nected component (an R vertex). See (Westbrook and Tar-
jan 1992; Battista and Tamassia 1996) for details on SPQR
trees, their properties, and how to construct them in linear
time (Gutwenger and Mutzel 2000).

SPQR trees are used in this paper to design an admissible
heuristic. Note that separators are pairs of vertices. There-
fore, any triconnected component can be entered and exited
from any other adjacent component - thus it is quite a chal-
lenge to use the separators to produce a heuristic.

2.2 Longest Path Search Heuristics
A biconnected block can only be entered or exited through
a separator. Thus, a simple path (which cannot use a separa-

57



tor more than once) between vertices s and t can only visit
biconnected blocks on the path from (a block containing) s
to (a block containing) t in the block-cut tree of G. Thus,
blocks not on such a path can be dropped from G before
counting the number of unvisited vertices, resulting in the
admissible biconnected component heuristic hBCC (Cohen,
Stern, and Felner 2020). This heuristic was found to signif-
icantly reduce the number of expanded nodes both for LSP
and for Snake-in-the-box when compared to hr. In Figure 1,
s is in component C1, and t is in component C3. Component
C2 is not on the path from C1 to C3, and can be discarded.

Another admissible heuristic for Snake-in-the-box ap-
pears in (Palombo et al. 2015). The remaining graph is parti-
tioned into disjoint sets of connected components. For each
such component the largest set of vertices that can be in a
snake was identified. One such component type used was a
star-shape subgraph G′ consisting of a vertex and its imme-
diate neighbours, which cannot all be in the same snake path
if the number of vertices in G′ is greater than 3. The number
of allowed vertices in each of these sets were added together
into an admissible heuristic. This can be seen as the equiv-
alent of the additive PDBs heuristics for MIN case (Felner,
Korf, and Hanan 2004). An important remaining question is
on the best way to find effective partitions quickly.

3 GLSP Problem Statement
As the longest simple path (LSP) (Cohen, Stern, and Felner
2020) problem is the best known special case, we call our
framework generalized longest simple path (GLSP).

A pair (x,Mx) with x ∈ (V ∪ E) and Mx ⊆ (V ∪ E) is
called a local exclusion constraint. The semantics of a con-
straint are as follows: after exiting x, the path cannot visit
any member of Mx. A global exclusion constraint for G is a
set of local exclusion constraints. LetL be a global exclusion
constraint. If (x,Mx) is in L, we denote Mx (assuming it is
unique) by L(x). Path p violates global exclusion constraint
L if it violates any of the local constraints of any element
in p. Thus defined, the global constraint L is always mono-
tonic: if p violates L, every extension of p also violates L.
When the local constraints in L are defined uniformly, we
call L a constraint rule. For example, the global constraint:
∀x ∈ (E ∪ V ), L(x) = {x}. i.e. ”no vertex or edge of the
graph may be visited more than once” is a constraint rule.
Definition 1 (Generalized LSP Problem). Given a graph
G = (V,E,w), and a global exclusion constraint L, find
a path of maximum weight w in G (optionally starting at
start vertex s, optionally ending at target vertex t) that does
not violate L.

Well known special cases that have been studied in the
literature include, for unweighted graphs:
1. Longest (vertex-wise) simple path (denoted as standard

LSP): pairs in L are (x, {x}) for all vertices x ∈ V . This
is a variant of the Hamiltonian path problem.

2. Longest (edge-wise) simple path (denoted ELSP): pairs
in L are (x, {x}) for all edges x ∈ E. This is a variant of
the Euler path problem.

3. Snake: pairs in L are (x,N(x) ∪ {x}) where N(x) are
the immediate neighbours of x, for all x ∈ V .

4. Snake in the box: Snake problem, with G being an n-
dimensional binary hypercube.

All the above are constraint rules, since the local con-
straints therein are defined uniformly. But it is also possible
to require, for example, L(x) = {x} for some vertices and
L(x) = {x} ∪N(x) for the rest of the vertices, resulting in
a global constraint somewhere between vertex-wise simple
path and Snake: cannot visit any vertex more than once, but
some vertices also cause their neighbors to be disallowed.

Our algorithms provided in this paper are general and can
be applied to any GLSP. But, to be focused we experiment
and provide examples only for LSP and Snake.

4 Fundamental Issues of Constrained Paths
Henceforth we assume that the variant of GLSP we are ad-
dressing is finding a constrained longest path from a given
source vertex s to a given target vertex t. Unless stated oth-
erwise, we also assume uniform weights, or equivalently
w(e) = 1 for all e ∈ E. We begin with the more basic
constrained path existence problem.

4.1 Complexity of Finding Any Constrained Path
A crucial subproblem of GLSP is that of path existence. That
is, for a given a graph G, a source vertex s, a target vertex t,
and a global constraint L, is there any path (not necessarily
shortest or longest) from s to t in G that does not violate L?
It turns out that even this basic problem is intractable:

Theorem 1. The path existence problem is NP-complete.

Proof. (outline) By reduction from 3-SAT. Use a level graph
with a vertex for every literal, and constraints disallowing
vertices inconsistent with previously visited literals.

Henceforth, we address the GLSP only for constraints L
where we know that path existence is tractable. It is easy
to see that with the constraints of standard LSP and Snake
(which are the problems in the focus of this paper) the path
existence problem is tractable: it can be decided by breadth-
first search from s in time linear in |E|.

4.2 Must-Include Paths
Given that there exists a constrained path, the next funda-
mental question is, does there exist a constrained path that
includes a given set of elements S? As this paper’s focus is
mostly on vertex-constrained paths, we limit this discussion
to the case where S is a set of vertices. It is well known that
even in the simplest case where the constraint of each vertex
x ∈ V consists of {x}, i.e. that of simple path, the problem
of finding a path that must include all vertices in S is NP-
hard (trivial reduction from Hamiltonian path). Therefore,
we focus on cases where S is a very small set of vertices,
mostly on |S| = 1 and |S| = 2.

Being able to quickly answer such must-include con-
strained path queries is important to generate admissible
search heuristics, which we examine next.
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5 Admissible Heuristics for GLSP
Consider any state of an A* maximum search where we have
a path starting at s, for a global constraint at least as tight
as simple path. The trivial bound hr on the length of the
remaining path is the number of as-yet unvisited vertices in
G. From hr we can subtract the number of vertices x through
which there is no path in the remaining graph from the end
of the path s′ to t. For better clarity, we formally state this
property in terms of the original graph G:
Theorem 2. Given a constrained (s, t) longest path prob-
lem on graph G = (V,E), with a constraint L such that
x ∈ L(x) for every vertex x ∈ V . Denote by S′ the set of
all vertices v for which there is no must-include {v} con-
strained path from s to t. Then the length of the longest con-
strained (s, t) path is at most |V | − |S′| − 1.

Proof. Constraint L forces every vertex to be visited at most
once in a constrained path (may be less, e.g. for the snake
constraint). The theorem thus follows immediately.

For example, in the graph of Figure 1 (left) only vertices
z, z′ cannot appear in any simple path from s to t, so this
upper bound on the LSP is 17− 2− 1 = 14.

Moving to the case |S| = 2, we get the scheme with the
following steps.

Step 1: Remove from G every vertex v for which there
is no must-include path from s to t, resulting in graph
G′ = (V ′, E′). Step 2: Construct an auxiliary ”exclusion”
graph Gex consisting of all vertices V ′−{s, t}, and an edge
{u, v} ∈ Gex just when there is no simple path (from s to t)
in G′ including {u, v}. 1 Then we have:
Theorem 3. Every (s, t) path in G = (V,E), constrained
by L s.t. ∀x ∈ V,L(x) ∈ {x}, has length at most α(Gex) +
1, where α(.) is the maximum independent set size.

Proof. Constraint L forces every vertex to be visited at most
once in a constrained path (may be less, e.g. for the snake
constraint). The vertices from G′ along a path must form
an independent set of Gex, because no constrained path can
include two vertices that are connected by an edge in Gex.
The theorem thus follows immediately.

For example, in the graph of Figure 1 (left) after reaching
vertex x one can traverse (only) either the top branch from
x to t (the ui vertices), or the middle branch, or the bottom
vertex w4. Thus Gex contains all the graph vertices, except
for s, t, and z, z′, as the latter vertices are singleton exclu-
sions and were deleted above in step 1. The edges in Gex

are between w4 and all the other wi vertices, between all ui
vertices and allwj vertices. All other vertices have no edges.
The maximum independent set in thisGex consists of all five
ui vertices, and all the singleton vertices (y, v1, v2, x), total
size 9. Thus the bound is 10. In this graph the bound happens
to be tight, i.e. equal to the number of edges in a LSP.

The above bound based on the independent set is an
upper bound, and can be used as an admissible heuristic.
We thus define hIS(G, s, t) = α(Gex) + 1. Computing

1Using the exclusion graph was originally suggested by Avi-
noam Yehezkel for the standard LSP.

the maximum independent set is also NP-hard, so we
approximate it as follows. A clique cover of a graph is a set
of cliques such that all vertices are in at least one of these
cliques. The size of a maximum independent set is less
than or equal to the number of cliques in any clique cover
(the cliques do not have to be disjoint and/or maximal).
We denote the latter clique cover approximated value of
hIS(G, s, t) by ĥIS(G, s, t). The clique cover approxima-
tion is also an admissible heuristic, and remains such even
if it is evaluated based on an exclusion graph that is missing
some edges. In our running example from Figure 1, if we
pick all 4 singleton vertices in Gex, as well as the cliques:
{u1, w1, w4}, {u2, w2, w4}, {u3, w3, w4}, {u4}, {u5} we
have a cover of size 9, which happens to be equal to the size
of the maximum independent set.

5.1 On Deciding Must-Include Paths
We have shown that the notion of must-include paths can be
used to define admissible heuristics for longest path. How-
ever, to compute these heuristics we must decide, given a
set of vertices S, whether there exists a must-include S path
from s to t, which we do next.

Although theorems 2 and 3 hold for any constraint rules
where x ∈ L(x), we focus mostly on vertex-disjoint paths,
i.e. the constraint rule L(x) = {x} for every vertex x.
We thus begin with this better-known case (LSP). As stated
above, for S of unbounded size deciding existence of a must-
include path for S is NP-complete. However, the problem
is in P for a bounded set size, due to a result on finding
K vertex-disjoint paths (Robertson and Seymour 1995). Al-
though showing that the problem complexity isO(|V |3), the
authors also state ”the algorithm is not practically feasible,
since it involves the manipulation of enormous constants”.

To be useful as a heuristic, one must be able to quickly
guarantee that there is no must-include path. We begin with
sets of size 1, which can be handled efficiently using bicon-
nected components. As stated in the background, heuristic
hBCC computes the biconnected blocks in G, and drops ev-
ery block not on the block-path from s to t.

It is easy to show that every vertex v that hBCC discards
has no must-include {v} path from s to t. The converse, that
for all remaining nodes v there exists a must-include {v}
path from s to t, follows from Menger’s theorem:

Theorem 4. Let G = (V,E) be a biconnected graph, and
s, t, v ∈ V . Then there is a simple s to t path through v.

Proof. Let G′ be G extended by adding new vertex w, and
edges {s, w} and {t, w}. By construction,G′ is biconnected.
By Menger’s theorem (Menger 1927), two internal vertex-
disjoint paths from v to w exist. Joining these paths at v and
removing w gives the desired simple path from s to t.

Theorem 4 implies that the vertices in S′ from Theorem 2,
i.e. every v for which there is no must-include simple path
from s to t through v; are exactly those not in the bicon-
nected components on the block-cut-tree from s to t. There-
fore, the bound of Theorem 2 is in fact exactly the bicon-
nected component heuristic from (Cohen, Stern, and Felner
2020). Computing this bound can be done efficiently using
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the biconnected components. We thus denote this heuristic
as hBCC(G, s, t) = |V | − |S′| − 1.

Since to detect must-include sets of size 1 we can use
biconnected components, it is reasonable to expect that for
must-include sets of size 2 (exclusion pairs) we can use tri-
connected components, which can also be computed effi-
ciently (Battista and Tamassia 1996). First, we show that if
the graph is triconnected there are no exclusion pairs.

Theorem 5. LetG(V,E) be a triconnected graph. Then, for
every s, t, v, w ∈ V there exists a simple path in G from s to
t that includes v and w.

s u1 u2 v u3 t

w
P1

P2
P3

Figure 2: Path splicing to get path through s, w, v, t (red)

Proof. Since G is triconnected, Dirac’s second theorem
(Dirac 1952, 1960) implies that there exists a simple cycle
containing any 3 vertices. Then s, v, t are on a simple cycle,
and there is a simple path P from s to v and then to t. From
Menger’s theorem it can be shown (also called Dirac’s Fan
Lemma (Dirac 1960)) that in a k-connected graph, given a
vertex w and a set of vertices V ′ there exist k vertex-disjoint
(except at w) paths from w to vertices in V ′. Let V ′ in our
case be the set of vertices of P . Then there exist 3 vertex-
disjoint (except for w) paths from w to the vertices of P ,
which we denote by P1, P2, P3 (see Figure 2), W.l.o.g. as-
sume that Pi are also all disjoint from P except for their last
vertex which is in P . Now consider the vertices u1, u2, u3
in P ending the paths P1, P2, P3, respectively, and assume
w.l.o.g. that u1 comes before u2 which comes before u3 on
P when traversing from s towards t. If u1, u2 are both on
the path segment of P from s to v, merge the following path
segments: s to u1 along P , then from u1 along P1 to w, then
P2 to u2, then from u2 to v and then to t along the remain-
ing part of P . We thus get a simple path from that starts
from s, traverses w, then v, and ends at t. (Note that we al-
low u1 = s, in which case the segment of P from s to u1 is
a zero-length path, and likewise for the case where u2 = v,
but the result is still the desired simple path). If u2 is not on
the path segment of P from s to v, then it must be on the
path segment from v to t, and due to the ordering this is true
for u3 as well. In this case the desired path is constructed
from the segments: s to v and then u2 along P , then w using
P2, then u3 using P3, and finally t using the remainder of P .
We thus get a simple path from s to v to w to t, i.e. with the
ordering of w, v reversed. (Either order is acceptable since
we only required that both w, v be on the path.)

To find exclusion pairs, we must thus consider a par-
tition of the graph into triconnected components. Assume
w.l.o.g. that G is biconnected (otherwise create the bicon-
nected components and handle each biconnected component

separately).G can be decomposed into its triconnected com-
ponents, as done by SPQR tree algorithms, which find all
pairs of vertices u, v which, when removed, make G uncon-
nected. Such pairs of vertices are called separation pairs.

Let v, w be a separation pair that partitionsG into disjoint
(other than v, w) subgraphs G1, G2, ..., Gk, k ≥ 3. Clearly,
a simple path can only enter and then exit at most one of
the Gi, because entering and exiting Gi uses up both w and
v which cannot be used any more. The simple path may in
addition start and/or end at some Gj , Gm with j 6= i 6= m
although either j = m or j 6= m are possible. Therefore,
let Gi1 and Gi2 be components that do not contain either
s or t, and let vertices x ∈ Gi1 , y ∈ Gi2 , both distinct
from v, w. We call this ”case P” because this case occurs in
super-vertices of type P in the SPQR tree. Note that for the
exclusion pairs set generated here to be non-empty we need
at least two components (neighbors of the P node) that do not
contain s, t except as separators, so either k ≥ 3 with s, t in
the same component or as separators, or we need k ≥ 4.

Another case, (called ”case S”, as it occurs in super-
vertices of type S in the SPQR tree), is when we have a cycle
of 4 separation pairs, i.e. (v1, v2), (v2, v3), (v3, v4), (v4, v1).
Assume for simplicity that each separation pair creates ex-
actly one component that does not contain the other sep-
aration vertices, which we call G12, G23, G34, G41 respec-
tively. Now if s ∈ G12 − {v1, v2} and t ∈ G34 − {v3, v4}
then to reach t from s can traverse either G23 − {v2, v3}
or G41 − {v4, v1} but not both. That is, let vertices x ∈
G23 − {v2, v3}, y ∈ G41 − {v4, v1}. Note that if we have
s = v1 the above also holds, except that now traversing
y ∈ G41 excludes G12 − {v1} as well as G23. So in this
case let y ∈ G41 − {v4, v1}, x ∈ G23 ∪ G12 − {v1, v3}.
Symmetrically for t being in a separator. This case can ob-
tained by examining the S super-vertices in the SPQR tree.

Property 6. Under the conditions stated in either case P
or in case S, there is no simple path in G from s to t that
includes both (the above defined) x and y.

And thus we can add, for each such x, y vertex pair, the
edge {x, y} to the exclusion graph Gex.

In the graph of Figure 1 we have a P super-vertex (right),
with three neighbors, none of which contain the ”entry ver-
tex” x or the ”exit vertex” t, except in the separator. So only
one of these subtrees can be entered and exited. Therefore
we add to Gex an edge between every vertex (not includ-
ing the separator) of each component, and every vertex of
each of the other components. The above happen to be all
the edges that need to be in Gex. Case S does not add any
edges toGex in this example, because the entry and exit ver-
tices are ”virtually” adjacent in each of the S super-vertices.

The above S and P cases are incomplete in that they do
not find all exclusion pairs, leading to an overestimate in
the path length estimation, thus still leading to an admissi-
ble heuristic which we denote by ĥSPQR. In practice, these
cases cover most of the exclusion pairs, according to the em-
pirical evaluation, at relatively little computational cost.
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5.2 Detecting Exclusion Pairs Using Flow
To achieve better coverage of exclusion pairs, we option-
ally check every potential exclusion pair of vertices not ruled
out by Theorem 5, by using flow techniques. The most pre-
cise scheme (though still not proved complete) we use is
multiflows. We require the flows: fsw = fwv = fvt = 1
or fsv = fvw = fwt = 1 between the respective vertex
pairs.Keeping these flows separate requires having different
variables to represent each potential flow over each edge,
and solving the resulting inequalities using linear program-
ming (LP). No LP solution means there is no such path, and
the pair {v, w} is added to Gex. We denote this approxima-
tion of hIS by ĥLP We also have a method ĥFlow which
uses simple (rather than multi) flow, which is faster but less
precise than multiflow.

5.3 Computing the Heuristics
Until now we have examined must-include path existence in
isolation. However, numerous such computations are needed
for each heuristic value computation. This overhead can be
minimized by reusing computations. Even the computation
of the biconndected components can be reused: if there is
more than one biconnected block on the path from s′, the
current end of the partial path, to t in the block-cut tree, the
only block where changes to the heuristic can occur (w.r.t.
to the parent search node) is in the one containing s′.

Algorithm 1: Compute Heuristics Incrementally
Input: G, s, t, current search node N

1: if N is the root node then
2: Let s′ = s, t′ = t, B = (G), B = G.
3: else
4: Let B = copy B from parent(N )
5: Copy heuristic values and t′ from parent(N )
6: Remove s′(parent(N)) from first(B).
7: end if
8: if s′ = t′ then
9: B = rest(B), B = first(B). t′ = t′(B).

10: /* (We just moved to a new biconnected block) */
11: else
12: Compute BCC block-tree BT in B
13: Let B′ be the BT blocks on the path from s′ to t′

14: For each B ∈ B′′, compute the heuristic value h(B)

15: /* (hBCC , hIS , or ĥIS as desired) */
16: Replace first(B) in B by the list B′.
17: Return sum of h(B, s′(B), t′(B)) over B ∈ B.
18: end if

Thus, we use Algorithm 1, assuming s′ 6= t, in which case
we are at a goal node and do not need to compute a heuristic.
At each search node, we keep lists of remaining vertices, of
the remaining biconnected components on the path to t, and
of the heuristics values for each biconnected component. For
convenience we also keep t′, the exit vertex in the compo-
nent containing s′, the end of the current partial path. For
each generated search node, s′ was just added to the partial
path so we (re)compute the biconnected components (only)

between s′ and t′. For each biconnected block B along the
clock-cut tree path, we denote its entry vertex by s′(B) and
its exit vertex by t′(B). Note that if s ∈ B then s′(B) = s′

and if t′ ∈ B then t′(B) = t′.
Computing the heuristic value in each block B is simply

counting the number of vertices for hBCC(B, s
′(B), t′(B).

To compute ĥIS(B, s′(B), t′(B) proceed as in Algorithm 2.

Algorithm 2: Compute ĥSPQR in biconnected component
Input: B, s′(B), t′(B)

1: Compute T , the SPQR tree for B.
2: Let V ′ = vertices(B)−{s’(B),t’(B).}, Bex = (V ′, ∅)
3: For each P vertex in T , add edges to Bex using case P.
4: For each S vertex in T , add edges to Bex using case S.
5: Greedily select cliques in Bex, preferring large cliques,

until a clique cover CC of B is achieved.
6: Set ĥSPQR(B, s

′(B), t′(B)) = |CC|+ 1

5.4 Additional Heuristics for Snake Constraint
The A* variant described below, as well as the exclusion
pairs heuristic, works correctly for all constraint types at
least as tight as the LSP constraint rule: x ∈ L(x) for
every vertex x. However, for tighter constraints it may be
possible to generate more informative heuristics. How to
do so is a hard open question in general. Still, we briefly
examine the special case of the Snake constraint rule, i.e.
∀x ∈ V, L(x) = {x}∪N(x). The star-shaped exclusion set
proposed in (Palombo et al. 2015), where not all vertices can
be on the same snake path, is one such exclusion set. Note
that it is better to make such sets as small as possible, thus
unlike (Palombo et al. 2015) we use a 4-vertex star shape,
which we henceforth call a ”Y” exclusion. In addition, note
that the Snake constraint does not allow any path to include
any set of vertices that form a cycle in G, and thus any cycle
in G is an exclusion set.

Given a disjoint set of patterns (cycles, star-shapes), and a
set of disjoint exclusion-pairs that are also disjoint from the
cycles and Y-shapes, we can apply the exclusion-pairs bound
and also deduct 1 for each cycle and each Y exclusion. As
in (Palombo et al. 2015), for disjoint patterns we can easily
use this as a bound on total path length.

For the Snake constraint we can use triconnected compo-
nents to detect additional excluded vertices (rather then ex-
clusion pairs): entering a region of the graph by a node v cuts
off possible exit through any neighbours of v as well v itself.
We call every separator pair v, w in G that also has an edge
{v, w} inG an effective separator. Every vertex v residing in
an SPQR tree fragment separated from s and t by an effec-
tive separator cannot be on a simple path from s to t, even if
v is in the same biconnected block as s and t. For example,
in Figure 1, the separator-pair u1, u2 is an effective separa-
tor, and the topR component cannot be used in a Snake path
from s to t, other than traversing just the separator vertices:
that is, neither u4 not u5 can be traversed in a Snake path.
This reduces the value of the bound on the Snake path length
by 2. We denote this heuristic by ĥSPQR+ .
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6 Lazy A* Search for GLSP
We search for the optimal constrained path using a vari-
ant of Lazy A* (Zhang and Bacchus 2012), modified to
find maximal-valued, rather than minimal-valued states. We
have several admissible (not necessarily consistent) heuris-
tics hi, some of which are expensive to compute. Thus not
all heuristics are computed at node generation time.

Algorithm 3: Lazy Max A*
Input: G,L, s, t

1: OPEN ←MakeHeap(MakeSearchNode(s))
2: while OPEN is not empty do
3: curr ← GetMax(OPEN)
4: if t ∈ path(curr) then
5: return curr
6: end if
7: if (i← ComputeHeuristic?(curr)) then
8: Compute hi(curr), re-insert curr into OPEN
9: else

10: OPEN ← insert(OPEN, expand(curr))
11: end if
12: end while
13: return fail

The heuristics are applied in order of index i. We as-
sume w.l.o.g. that higher-index heuristics dominate, i.e.
hi+1(n) ≤ hi(n) for every mode n in the search space.
(Otherwise, just redefine each heuristic to be the minimum
between itself and the previous ones.) We use heuristics
h1 = hBCC , hi = ĥIS , for i > 1, using increasingly
precise versions of ĥIS , with an increasingly more com-
plete version of the exclusion graph Gex. Specifically we
use h2 = ĥSPQR, or h2 = ĥFlow and h3 = ĥLP .

ComputeHeuristic? returns the number of the next heuris-
tic hi for curr to be computed, false if none left. It can
be made to bypass some expensive heuristics (e.g. ĥLP ) in
some cases, as in ”rational” Lazy A* (Karpas et al. 2018),
further reducing runtime, an option not used in this paper.

The expand function works as follows. For each possible
edge e leading out of the end of p = path(curr), add e
to the end of p, denoting the extended path by p′. Check if
there is still an L constrained path to t from the end of p′,
otherwise discard p′. Create a new search node for n with
path(n) = p′ and f(n) = g(curr) + w(e) + h0(n). As
search nodes contain the entire path, with only one way to
generate any given path, there is no need for a closed list.

7 Empirical Evaluation
Experiments evaluating our heuristics vs. a baseline of the
hBCC heuristic searching for LSP and for Snake paths were
in different 4-connected grid types. The code was imple-
mented in Python using Sage for the advanced graph algo-
rithms, such as computation of the SPQR tree. Experiments
were run on AMD Ryzen 9/3900X 12-Core @3.80GHz with
64.0GB, 2667MHz RAM. We evaluate all heuristics both
in naive implementation (recomputing biconnected compo-
nents) and our new incremental version.

In our first experiment we compare all our heuristics in
two types of graphs. The first type is a demonstration of the
power of exclusion pairs on a favorable graph with parallel
paths, in the ”hall” graph of Figure 3, with s in purple and
t in green. Unlike hBCC , our new heuristics quickly real-
ize that only one of the short parallel corridors at the bottom
can be traversed. They thus direct the search towards the top
bypass, immediately finding the optimal solution. The sec-
ond type are randomly generated 2D-grid graphs, such as
the one in Figure 3 (colors indicate unpruned biconnected
blocks). Results for LSP are shown in Table 1.

Figure 3: Hall Map (left), Random Map G1821 (right)

For each problem instance, we report the length of the
longest simple path as f∗. Then, for each heuristic we report
the following: (1) The number of expanded nodes, unless the
search timed out. (2) The value of the heuristic at the initial
state, denoted by h(s). (3) Runtime in seconds both for the
naive implementation (tni) and for the incremental version
(tinc) of the heuristic. Bold fonts indicate the best variant(s).
The incremental implementation had little or no effect on
the number of expanded nodes (not shown), but resulted in
a very significant improvement in runtime, sometimes by an
order of magnitude.

Figure 4: Maze (left), Rooms Instance (right)

All our new ĥIS variants resulted in a major reduction
in the number of expanded nodes, in some cases by more
than an order of magnitude. The LP based technique had the
smallest number of expanded nodes, (shown when it did not
time out, at 1000 seconds). However, only the SPQR-based
scheme had an overhead low enough to make its computa-
tion worthwhile when comparing runtime. Even for SPQR,
the savings in number of expansions usually had to be by
more than a factor of 2 in order to reduce the overall runtime.
In cases where the reduction factor in number of expansions
was only moderate, the incremental version of hBCC was
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Problem hBCC ĥSPQR ĥLP ĥFlow

Instances f∗ exp h(s) tni tinc exp h(s) tni tinc exp h(s) tni tinc exp h(s) tni tinc

Hall 35 3295 71 9.50 6.35 34 38 0.20 0.04 34 35 128 128 34 38 27 27
G13 43 2122 47 4.64 1.06 1546 46 7.0 1.34 1550 46 144 16 1550 46 35 5
G21 121 >76K 135 T/O T/O 34874 127 T/O 264 125 T/O T/O 128 T/O T/O
G53 47 304 52 0.67 0.1 208 51 2.34 0.3 103 49 96 13 103 49 24 3
G145 57 1761 60 7.44 1.52 425 58 3.20 0.72 58 T/O 347 60 T/O 622
G321 123 >63K 135 T/O T/O 31033 131 902 403 131 T/O T/O 132 T/O T/O
G921 81 20339 86 159 69.0 8769 85 97.2 20.1 85 T/O T/O 85 T/O T/O
G1821 71 1267 78 2.07 0.26 383 71 1.88 0.09 383 71 11 0.7 383 71 4 0.2

Table 1: LSP Calibration Experiments Results

Problem Obstacles hBCC ĥSPQR

Instances removed f∗ exp h(s) tni tinc exp h(s) tinc

M00 0 79 1108 106 1.44 0.54 645 90 0.84
M11 5 89 2200 111 4.37 1.93 830 99 4.03
M12 10 101 6195 116 20.96 10.26 1400 114 13.03
M13 15 111 3756 121 12.43 8.69 1417 119 21.47
M14 20 115 181716 126 14916.77 12681.40 48170 125 1850.50
M21 5 93 2746 111 4.83 2.05 434 97 1.66
M22 10 107 55602 116 777.51 692.94 4518 111 42.85
M31 5 85 2731 113 5.03 2.45 1270 103 5.39
M32 10 99 30297 118 261.95 223.48 10837 116 128.75
M33 15 111 82798 123 2439.5 2305.95 22412 121 535.58
M34 20 117 >113k 128 T/O T/O 68138 127 3726.85

Table 2: Results for LSP on Maze, 3 random sequences all starting with M00

Problem Obstacles hBCC+X hSPQR+ ĥSPQR++Y

Instances removed f∗ exp h(s) t tinc exp h(s) tinc exp h(s) tinc

S00 0 53 74 57 0.26 0.01 74 55 0.03 74 55 0.03
S11 1 53 143 62 0.56 0.02 143 57 0.04 143 57 0.04
S12 2 55 207 67 0.75 0.04 207 63 0.13 207 62 0.13
S13 3 55 2732 75 9.63 1.0 2678 69 2.31 2642 66 2.24
S21 1 55 159 63 0.59 0.04 153 60 0.12 153 58 0.12
S22 2 59 1463 96 13.62 1.57 1073 75 3.67 1047 70 2.3
S23 3 63 5831 111 57.66 13.49 2325 86 8.5 2147 80 7.45
S25 4 73 54181 162 1883.74 595.02 10735 99 70.04 4223 88 16.5
S31 1 53 350 71 1.22 0.06 234 63 0.1 230 62 0.09
S32 2 57 582 86 1.77 0.31 366 73 0.42 192 69 0.24
S33 3 63 3570 98 17.64 3.97 1693 79 2.35 1256 73 1.79
S34 4 77 8654 124 58.72 14.81 4841 103 11.35 3013 93 7.14

Table 3: Results for Snake on rooms map, all sequences starting with S00

Pr. hBCC ĥSPQR

Inst. f∗ exp h(s) tni tinc exp h(s) tinc

R1 55 78 57 0.1 0.01 76 55 0.02
R2 63 226 66 0.53 0.03 84 63 0.04
R3 69 654 72 1.15 0.13 464 70 0.32
R4 71 14721 91 88.27 79.4 1215 72 1.08
R5 79 230K 106 21K 18K 7627 82 14.68

Table 4: Results for LSP on Rooms Map Sequence

fastest. Also, obvious from these experiments is the fact that
the flow techniques hFlow and even more so FLP reduce
the number of expanded nodes. But they have a huge run-
time overhead that makes them impractical. Thus they were

dropped in the rest of the evaluation.

In our second experiment, to be more systematic, we gen-
erate problem instances in sequences of increasing diffi-
culty. We use grid maps of mazes and rooms, with a pre-
determined s and t. For mazes, we start with the maze in
Figure 4 (instance M00), and randomly remove 5 obstacles
(black) to get the next instance. Here timeout=15K seconds.

For rooms, we start with room map lak105d.map from the
movingai repository (Sturtevant 2012), picked as it is rea-
sonably small with interesting room structure. We randomly
add obstacles until there is no path from s to t. Algorithms
were run starting from the easiest (containing most obsta-
cles) problem. Sequences extend until some methods time
out (Tables 2, 4).
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Finally, Table 3 depicts results for instance sequences of
Snake on different randomizations of obstacles in the rooms
map. We compare our incremental hBCC implementation
to the baseline standard hBCC implementation (both with
X (star) patterns), and to our new SPQR-based heuristics,
where ĥSPQR+ uses only pruning and exclusion pairs and
ĥSPQR++Y adds in the Y partitions. The advantage of our
new heuristics increases with problem instance difficulty.

8 Conclusion
We developed a framework called Generalized LSP (GLSP)
of constrained longest path problems, that generalizes most
standard longest simple path problems, including LSP,
Snake, and Euler paths. This enables using a common
scheme for analysis, bounds, and for developing admissible
search heuristics for these problems.

A non-trivial scheme using exclusion sets of size 2 is es-
pecially powerful. New heuristics based on this were devel-
oped, as well as efficient ways to approximate them. Our
new heuristics, especially the variant based on SPQR trees,
were shown to reduce the number of expanded nodes during
search compared to existing methods, frequently leading to
improved overall runtime despite their significant overhead.

Despite performing well, our rules based on SPQR trees
still do not deliver all exclusion pairs, and it is challenging
future work to find and prove a complete set of rules which
can still be implemented efficiently. Combining the different
types of exclusions in a way that does not require mutual dis-
jointness is also a challenging issue that can further improve
the accuracy of the resulting heuristics.
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