
On Bidirectional Heuristic Search in Classical Planning: An Analysis of BAE*

Kilian Hu,1 David Speck1,2

1University of Freiburg, Freiburg, Germany
2Linköping University, Linköping, Sweden

kilian@hu101.com, speckd@informatik.uni-freiburg.de

Abstract

Heuristic search is a successful approach to cost-optimal
planning. Bidirectional heuristic search algorithms have been
around for a long time, but only recent advances have led to
algorithms like BAE∗ that have the potential to outperform
unidirectional heuristic search algorithms like A∗ in practice.
In this work, we analyze BAE∗ for classical planning and the
challenges associated with the underlying assumption of an
explicit state representation. We show that it is crucial to use
mutexes and reachability analysis to reduce the potentially
exponential number of goal states, which makes it possible to
create an explicit representation of a reversed planning task
that can be used for the backward search of BAE∗. Our empir-
ical evaluation shows that BAE∗ solves more instances than
A∗ in multiple domains with significantly fewer node expan-
sions, demonstrating the usefulness of BAE∗ in planning.

Introduction
Heuristic search has been one of the dominant approaches
to classical planning in recent decades. In cost-optimal plan-
ning, (forward) A∗ (Hart, Nilsson, and Raphael 1968) is the
most prominent heuristic search algorithm. While A∗ ex-
plores the state space unidirectionally, searching either from
the initial state to a goal state (forward A∗) or from a goal
state to the initial state (backward A∗), front-to-end bidirec-
tional heuristic search performs these two searches simulta-
neously, stopping when both meet while satisfying a certain
termination condition (Pohl 1969). Although bidirectional
heuristic search algorithms can in theory outperform unidi-
rectional heuristic search algorithms, they have almost never
performed much better empirically (Barker and Korf 2015).
This observation, together with the drawbacks of backward
search in classical planning caused by the presence of par-
tial states where some values of the state variables are un-
known (Alcázar et al. 2013), are the reasons why bidirec-
tional heuristic search for classical planning has received lit-
tle attention.

A notable exception in classical planning is symbolic
search, where bidirectional search is considered the dom-
inant search strategy (Torralba et al. 2017; Speck, Geißer,
and Mattmüller 2020). While there have been recent suc-
cesses in combining symbolic search with heuristic search

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Fišer, Torralba, and Hoffmann 2022), most modern sym-
bolic planners are mainly based on bidirectional sym-
bolic blind search, which achieves state-of-the-art perfor-
mance (Edelkamp, Kissmann, and Torralba 2015) without
using any heuristic functions (Kissmann, Edelkamp, and
Hoffmann 2014; Torralba et al. 2014; Speck, Geißer, and
Mattmüller 2018).

More recently, the interest in bidirectional heuristic search
has been rekindled due to improved theoretical understand-
ing which lead the development of new successful algo-
rithms with strong theoretical properties (Barker and Korf
2015; Eckerle et al. 2017; Holte et al. 2017; Chen et al. 2017;
Alcázar, Riddle, and Barley 2020; Alcázar 2021). Alcázar,
Riddle, and Barley (2020) highlighted the strong perfor-
mance of a best-first bidirectional search algorithm based
on heuristic errors called BAE∗ (Sadhukhan 2012, 2013),
by performing a comparison with other bidirectional search
algorithms. Interestingly, BAE∗ had a strong performance,
even compared to more sophisticated algorithms that incor-
porate the ideas of BAE∗. Therefore, BAE∗ is a promising
candidate to investigate whether and how recent advances in
bidirectional heuristic search with strong empirical results
can be transferred to classical planning.

In this paper, we analyze BAE∗ for classical planning in
theory and practice. The content of this paper is organized as
follows. First, we introduce the relevant background for this
paper concerning classical planning and heuristic search.
Next, we explain BAE∗ and highlight the challenges asso-
ciated with the underlying assumption of an explicit state
representation when using BAE∗ for classical planning. To
make the backward search of BAE∗ possible, we define a
reversed planning task that does not rely on partial states,
but has a potentially exponential increase in size. We show
that the use of mutexes and reachability analysis can signif-
icantly reduce the number of goal states, making it possi-
ble to create the reversed task in practice for many domains.
An empirical evaluation comparing A∗ in both forward and
backward directions with BAE∗ shows that A∗ performs best
overall, but BAE∗ solves more instances than A∗ in several
domains with significantly fewer node expansions. A simple
portfolio approach that selects BAE∗ if the planning task is
reversible within reasonable resource bounds and selects A∗
otherwise is already sufficient to outperform A∗, proving the
usefulness of bidirectional heuristic search in classical plan-

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

91

ning. Finally, we discuss future research directions and draw
a conclusion.

Background
We consider classical planning tasks as defined by the
SAS+ formalism (Bäckström and Nebel 1995). A planning
task is a tuple Π = 〈V ,O, sI , s?〉 consisting of four com-
ponents. V is a finite set of state variables where each vari-
able v ∈ V has a finite domain Dv = {0, . . . , |Dv| − 1}.
A fact is a pair (v, d), where v ∈ V and d ∈ Dv and a
partial state s is a consistent set of facts, i.e., each vari-
able occurs in at most one of the facts in s. If s assigns a
value to each variable v ∈ V , s is called a state. We refer
to the set of all possible states over V as S. (Partial) states
can be seen as (partial) functions which map variables to
values, i.e., s[v] is the value of variable v in state s. We de-
note the set of all variables contained in a (partial) state as
vars(s). O is a finite set of operators, where for an opera-
tor o ∈ O the precondition pre(o) and effect eff (o) both are
partial states. We refer to the variables which occur in pre(o)
as prevars(o) as a shorthand for vars(pre(o)) (analogously
effvars(o) for the effect). An operator o ∈ O is applicable
in state s iff pre(o) ⊆ s. If applicable, applying o in s yields
the state s′ where s′[v] = eff (o)[v] for all v ∈ effvars(o)
and s′[v] = s[v] otherwise. We write sJoK for s′. Each op-
erator o has non-negative cost written as cost(o) ∈ N0. The
state sI ∈ S is called the initial state and the partial vari-
able assignment s? specifies the goal condition that defines
all possible goal states S? ⊆ S.

The objective of classical planning is to determine a plan
π = 〈o0, . . . , on−1〉 that is a sequence of operators oi ∈ O.
We call π applicable in s0 ∈ S if there exist states s1, . . . , sn
such that oi is applicable in si and si+1 = siJoiK for all
i = 0, . . . , n − 1. We call π a plan for Π if it is applicable
in sI and if sn ∈ S?. The cost of a plan π is the sum of
operator costs, i.e., cost(π) =

∑n−1
i=0 cost(oi). While the

objective of satisficing planning is to find any plan for Π, we
focus on optimal planning, where the objective is to find an
optimal plan, i.e., a plan π for which there is no plan π′ with
cost(π′) < cost(π).

We consider the delete relaxation of a task Π, which we
denote as Π+, where the operators do not have a “negative”
effect (Bonet and Geffner 2001). More precisely, the appli-
cation of a relaxed operator o+ only adds the effect to the
relaxed state, i.e., s+Jo+K = s+ ∪ eff (o+). Consequently,
the requirement that the states have to be consistent is omit-
ted, i.e., an relaxed state s+ can contain multiple facts with
the same variable. A pair of facts is called mutually exclusive
(mutex) if there is no reachable state s ∈ S from sI such that
s contains both facts. Finally, a state is called spurious if it
cannot be reached from the initial state.

Heuristic Search
A∗ (Hart, Nilsson, and Raphael 1968) is a widely used
heuristic search algorithm for solving planning problems.
A∗ builds upon Dijkstra’s algorithm (Dijkstra 1959) by mak-
ing use of a heuristic function that guides the search towards
promising parts of the state space. A heuristic is a com-

putable function h : S → N0 ∪ {∞} that, given a state s ∈
S, estimates the cost of reaching a state in S? from s (Pearl
1984). The perfect heuristic h∗ maps each state s to the cost
of the cheapest path from s to any goal state. If the goal can-
not be reached from state s, then h∗(s) = ∞. A heuristic
is admissible iff it never overestimates the cost of reaching
a goal state, i.e., h(s) ≤ h∗(s) for all s ∈ S. A heuristic is
consistent iff it is admissible and h(s) ≤ h(sJoK) + cost(o)
for all states s ∈ S and operators o ∈ O applicable in s.
Since BAE∗ assumes consistent heuristics (Alcázar, Riddle,
and Barley 2020), from now on we consider only consistent
heuristics.

To store information about states, A∗ uses (search) nodes.
A node n refers to a single state s, has a reference to its
parent node from which is was created and stores several
values like the cost of the path leading to the node, de-
noted as g(n) and the heuristic value of the node’s state,
denoted as h(n). A∗ maintains an open list that initially
contains only one node with the initial state, and a closed
list to keep track of the states already seen. Iteratively, A∗
selects from the open list the node n that minimizes the pri-
ority function f(n) = g(n) + h(n), and expands n. The
expansion of n, adds the state s associated with n to the
closed list and generates nodes for all possible successors
succ = {sJoK | o ∈ O, pre(o) ⊆ s} of s, from which those
states not yet seen, i.e., not part of the closed list, are added
to the open list. A solution is found when a goal node is ex-
panded and given a consistent heuristic the found solution is
optimal.

Since we are interested in bidirectional heuristic search,
where separate forward and backward search is performed,
we label the values with the corresponding search direction,
e.g., a forward heuristic estimate is written as hf (n) and the
g-value of a node in the backward direction is written as
gb(n). If the direction of a value can be either forward or
backward, the value is denoted by x, e.g., fx. The opposite
direction is called x̄. Note that the exact realization of back-
ward search for a given classical planning task is explained
in detail in the next section.

BAE∗ in Planning

BAE∗ (Sadhukhan 2012) is a bidirectional best-first search
algorithm which is based on heuristic errors. In the follow-
ing, we explain the functioning of BAE∗ as described in
Alcázar, Riddle, and Barley (2020). We then discuss how
backward search of BAE∗ is possible for a classical planning
task, and discuss the challenges involved as well as possible
solutions and improvements for better performance.

Similar to other bidirectional heuristic search algorithms,
bidirectional heuristic search using error estimate (BAE∗)
performs two A∗-like searches, one in the forward direction
and one in the backward direction. The core idea of BAE∗
is to use a priority function for the open lists Openx that
incorporates information from the other search direction x̄
by computing the heuristic errors accumulated along a path.
The forward error along a path is defined as FEx(n) =
gx(n)+hx(n)−hx(nI,x), where nI,x is the node associated

92

Algorithm 1: Pseudocode of BAE∗ (inspired by Sadhukhan
(2012) and Alcázar, Riddle, and Barley (2020)).

1: Openf ← {makeInitNodef (sI,f)};
2: Openb ← {makeInitNodeb(sI,b)};
3: Closedf ← ∅; Closedb ← ∅;
4: L← 0; U ←∞; π ← no plan; x← f ;
5: while Openf 6= ∅ and Openb 6= ∅ do
6: bMinf ← Openf .minPriority()
7: bMinb ← Openb.minPriority()

8: L← bMinf+bMinb
2

9: n← Openx.popMin()
10: Closedx.insert(n)
11: if n ∈ Open x̄ and gx(n) + gx̄(n) < U then
12: U ← gx(n) + gx̄(n)
13: π ← extract-plan(n)
14: end if
15: if L ≥ U then
16: return π
17: end if
18: for n′ ∈ succx(n) \ Closedx do
19: bx(n′)← fx(n′) + dx(n′)
20: Openx.insert(node: n′, priority: bx(n′))
21: end for
22: x← chooseDirection()
23: end while
24: return π

with the initial state of direction x.1 The backward error is
defined as BEx(n) = gx(n) − hx̄(n) and the total error is
defined as TEx(n) = FEx(n) + BEx(n). Alcázar, Riddle,
and Barley (2020) note that the heuristic value of the initial
state in the forward error in the priority function can be omit-
ted since it is a constant. This yields a bidirectional estimate
of a node n, the b-value, defined as bx(n) = fx(n) + dx(n)
where dx(n) = gx(n) − hx̄(n) is the heuristic inaccuracy
(Kaindl and Kainz 1997; Alcázar, Riddle, and Barley 2020).
Intuitively, the d-value dx(n) of a node n describes the ac-
tual error that the backward heuristic makes in evaluating
hx̄(n) (Alcázar, Riddle, and Barley 2020). In BAE∗, the pri-
ority function uses the b-value bx(n) to assign a node n a
priority value in search direction x.

Finally, the termination criterion of BAE∗ considers a
lower and upper bound on the cost of the optimal solution,
denoted by L and U , respectively. The lower bound L is
defined as L =

bMinf+bMinb
2 where bMinx is the minimum b-

value of a node in the open list Openx. The upper bound U
is the cost of the best solution found so far. BAE∗ terminates
and returns the best plan found if the lower bound exceeds
the upper bound, i.e., L ≥ U , or if one of the open lists is
empty.

Algorithm 1 shows the pseudocode of BAE∗. First, the
open and closed lists are initialized for both search direc-
tions (lines 1 to 3). In line 4, the lower bound L, the up-
per bound U and the best plan found π are initialized and

1Note that BAE∗ assumes a single goal state, which is consid-
ered as the initial state in the backward direction.

the search direction x is initially set to forward. The algo-
rithm continues as long as no open list is empty (line 5) or
the lower bound exceeds the upper bound (line 15), in both
cases the best plan found is returned (lines 16 and 24). In
lines 6 to 8, the lower bound L is updated and in lines 9 and
10, the most promising node n in the chosen direction x is
extracted from the corresponding open list and added to the
closed list. Then we check if the search frontiers have met
and if so, if we have found a better solution, which then leads
to an update of the upper bound and the best plan found so
far (lines 11 to 14). In lines 18 to 21, the successor states of
n are generated taking into account the search direction x,
and all nodes not included in the closed list are added to the
corresponding open list. Finally, the next search direction is
selected in line 22. The original BAE∗ algorithm uses an al-
ternating direction selection (Sadhukhan 2012), but in gen-
eral all strategies that iteratively switch between both search
directions guarantee optimality if the termination criterion is
chosen appropriately.

Backward Search
BAE∗ is a bidirectional search algorithm that performs a for-
ward and backward search. To perform a backward search
on a given planning task, it is natural to define a reversed
(or backward) version of the given task. There are several
methods in the literature for generating such a reversed plan-
ning task that enables backward search, such as the creation
of the dual of a PDDL planning task (Suda 2014), the cre-
ation of a regression state model of a STRIPS planning task
(Geffner and Bonet 2013), or, similar to our definition, the
creation of a reversed SAS+ planning task (Alcázar et al.
2013). A common definition of a reversed SAS+ planning
task and the subsequent search use partial states (Alcázar
et al. 2013) to avoid a potential exponential increase in the
size of the reversed task that can arise from the partial goal
state, since it can describe exponentially many goal states.
However, partial states affect the performance of a bidirec-
tional search due to the non-trivial intersection check of
the two search frontiers. Recent bidirectional approaches
(Kuroiwa and Fukunaga 2020) for satisficing planning even
make tradeoffs between intersection testing completeness
and better performance. Finally, and most importantly, ap-
plying BAE∗ to planning without changing the core algo-
rithm requires an explicit state representation.

Therefore, we propose to construct a reversed SAS+

planning task suitable for BAE∗ with an explicit state repre-
sentation, potentially increasing the task size exponentially.
In the empirical evaluation, we find that it is possible to
quickly determine whether we can construct such a reversed
planning task for a given planning task, and if so, BAE∗ of-
ten provides better performance than forward A∗. Modifying
BAE∗ to allow for searching with a more compact represen-
tation using partial states is an interesting line of research
that we leave open for future work.

Definition 1 (Reversed Task). Given a planning task
Π = 〈V ,O, sI , s?〉, we define a reversed planning task as
reversed(Π) = Πb = 〈V ,Ob, s?, sI〉.

There are two critical aspects to discuss regarding the

93

construction and handling of the reversed planning task Πb,
namely 1) that Πb has a partial initial state s? and 2) how the
set of operators Ob is defined.

Multiple Initial States In general, it is possible to use a
dummy variable and several dummy goal operators to intro-
duce a unique dummy goal state for a given planning task
Π such that Πb has a unique initial state. However, a closer
look at the reversed task Πb generated by this procedure re-
veals that the operators leading from such a dummy goal
state to the actual goal states S? are only relevant in the
first expansion of a search algorithm. Moreover, the presence
of such dummy operators and a dummy variable can nega-
tively affect the informativeness of heuristics. Therefore, in-
stead of generating these operators, we propose to generate
all goal states of s? and insert them directly into the back-
ward open list during initialization to save the memory and
time required to generate these operators. Clearly, there can
be exponentially many goal states specified by s?, leading
to exponentially many initial states to be generated. There-
fore, we propose to use mutexes and a reachability analysis
to reduce the number of possible initial states of Πb.

Given a set of mutexes, the computation of all valid goal
states of Π, i.e., all valid initial states of Πb, can be described
as a search for all solutions to a Constraint Satisfaction Prob-
lem (CSP) (Russell and Norvig 2003), where the variables
of the CSP are all variables not specified in the goal condi-
tion with their respective domains and the mutexes represent
the constraints. To solve this CSP, we assign values to the
variables in a fixed order and check after each assignment
whether any mutex has been violated. In case of violation,
we stop trying to complete the current assignment and try the
next value for the current variable. This backtracking proce-
dure avoids a lot of unnecessary computations.

In addition, we propose to reduce the set of goal states
by performing a reachability analysis in the delete relaxed
reversed task, i.e., we discard a goal state if the initial state
cannot be reached from it by going backwards in the delete
relaxation. While this reduction of the number of goal states
can lead to noticeable overhead, it is particularly beneficial
for sampling-based heuristics such as the diverse-potential
heuristic (Seipp, Pommerening, and Helmert 2015), since
the samples are drawn from more relevant parts of the search
space, which increases the quality of the heuristic.

Reversed Operators We define the set of reversed oper-
ators as Ob =

⋃
o∈O reverse(o), where reverse(o) yields

the set of reversed operators for each operator o ∈ O. To
generate the set of reversed operators reverse(o) for an op-
erator o ∈ O, we consider three cases for each variable
v ∈ prevars(o) ∪ effvars(o):

1) If v ∈ prevars(o) ∧ v ∈ effvars(o), we can simply
swap the precondition and the effect of these variables,
i.e., pre(ob)[v] = eff (o)[v] and eff (ob)[v] = pre(o)[v]
for all ob ∈ reverse(o).

2) If v ∈ prevars(o) ∧ v /∈ effvars(o), the reversed op-
erators keep that same precondition, i.e., pre(ob)[v] =
pre(o)[v] for all ob ∈ reverse(o).

3) If v /∈ prevars(o) ∧ v ∈ effvars(o), more work is

needed because after applying the operator o it is unclear
what value the variable v had before. Thus, such an op-
erator does not lead to a single reversed operator, but to
a set of reversed operators. We collect all variables be-
longing to this case and for each possible assignment of
these variables we create a corresponding operator that
has the particular assignment among its effect. We note
that the number of possible assignments for these vari-
ables grows exponentially with the number of variables.

This method of generating a reversed task makes it possi-
ble to readily apply BAE∗ to a classical planning task. How-
ever, this method has the disadvantage that the size of the
reversed planning task is potentially exponential and that a
large number of spurious states can affect the performance
of BAE∗.

Further Optimizations
In the following, we discuss further optimizations and de-
sign decisions that can improve the performance of BAE∗
for classical planning and that we use in our implementation
for the empirical evaluation.

Mutex Pruning We prune states generated during the
search which violate a mutex (Alcázar and Torralba 2015).
Similar to backward heuristic search (Alcázar et al. 2013),
this is especially important in the backward direction of
BAE∗ to reduce the number of spurious states. Although it
is in general not possible to generate all mutexes and prune
all spurious states, in practice it is often possible to obtain a
reasonable number of mutexes, which greatly improves per-
formance (Alcázar and Torralba 2015).

Trimming and Screening We augment BAE∗ with two
techniques, called trimming and screening, introduced with
the bidirectional heuristic search algorithm BS∗ (Kwa
1989). Both techniques discard a node n if it cannot be part
of an optimal solution because its estimated cost is higher
than the cost of the best plan found so far, i.e., if f(n) > U .
Trimming is applied each time U decreases, and accordingly
discards nodes from the open lists, resulting in potentially
lower memory consumption. Screening is applied before a
node is inserted into an open list which can avoid the un-
necessary cost of insertion. For BAE∗, we adapt the de-
laying rule of the individual b bound from Definition 7 in
Alcázar, Riddle, and Barley (2020), to define the trimming
and screening criterion as bx(n) ≥ 2U − bMinx̄, which is
different from the criterion used by Kwa (1989). Any node
satisfying this inequality cannot be part of a better solution
than the current one and can therefore be ignored.

Search Direction In the original implementation of BAE∗
(Sadhukhan 2012, 2013; Alcázar, Riddle, and Barley 2020),
the two search directions are selected alternatingly. As with
other bidirectional search algorithms, our experiments show
that Pohl’s cardinality criterion (Pohl 1971), i.e., expansion
in the direction with the smaller open list, performs better
overall.

Tie Breaking In forward A∗ and its backward version
A∗b , the strategy for breaking ties between the most promis-
ing states (smallest f -value) is usually to favor the states

94

with smaller g-values. Our experiments for BAE∗ show that
breaking ties in favor of larger g-values usually leads to
better results. This observation is consistent with empiri-
cal results for other bidirectional heuristic search algorithms
(Chen et al. 2017).

Empirical Evaluation
We implemented BAE∗ in Fast Downward Release 20.06
(Helmert 2006) and used the h2-based preprocessor of
Alcázar and Torralba (2015) to generate mutexes for pruning
spurious states and operators. For symbolic blind search, we
used the symbolic planner SymK (Speck, Mattmüller, and
Nebel 2020; Speck 2022). All of our benchmarks, source
code and experiment data are available online (Hu and Speck
2022). For the empirical evaluation we used a maximum of 4
GB memory and 30 minutes runtime. All experiments were
run on a compute cluster with nodes equipped with two In-
tel Xeon Gold 6242 32-core CPUs, 20 MB of cache, and
188 GB of shared memory, running Ubuntu 20.04.3 LTS 64
bit using Downward Lab (Seipp et al. 2017). Our bench-
mark suite contains the 1816 planning instances from the
optimal tracks of the International Planning Competitions
(IPCs), excluding unsolvable instances or instances with ax-
ioms or conditional effects.

In what follows, we analyze various aspects of BAE∗ and
compare it with forward A∗ and backward A∗b . We use three
prominent representatives of consistent heuristics in classi-
cal planning, namely the relaxation heuristic hmax (Bonet
and Geffner 2001), the incremental pattern database heuris-
tic hiPDB (Haslum et al. 2007) and the diverse potentials
heuristic hpot (Seipp, Pommerening, and Helmert 2015). We
limit the hill climbing time for hiPDB to 5 minutes for each of
the involved search directions and use CPLEX release 12.10
as a linear program solver for hpot. Next and first, we analyze
whether and how often it is possible to generate a reversed
task (Definition 1) that can be readily used for the backward
search of BAE∗ and A∗b .

Reversed Task Generation
We analyze the feasibility of generating a reversed task with
an explicit state representation to perform BAE∗ readily. The
generation of the reversed planning task in a naive way, i.e.,
without pruning the number of goal states, is possible only
for 833 out of 1816 planning instances within the given time
and memory limit. The main reason for this is the high num-
ber of goal states that can occur due to the partial goal state
definition of classical planning tasks. Interestingly, revers-
ing operators generally turns out to be unproblematic, with
an average of 1.44 reversed operators generated per opera-
tor across all instances. When pruning the set of goal states
using the methods discussed, i.e., using mutexes and a reach-
ability analysis of the delete relaxed reversed task, it is pos-
sible to create the reversed planning task of 1256 planning
instances. Moreover, as shown in Figure 1, the number of
goal states is greatly reduced, which has a direct positive
impact on the performance of BAE∗ and some (sampling-
based) heuristics.

Overall, the time to generate reversed planning tasks
heavily depends on the domain and the instance size. The

100 102 104 106 108 ∅
no initial state pruning

100

102

104

106

108

∅

m
u

te
x

+
re

ac
h

ab
ili

ty
an

al
ys

is
p

ru
n

in
g

Figure 1: Comparison of the number of initial states of the
reversed planning task with and without mutex and reach-
ability analysis pruning. With ∅ we denote instances for
which the reversed planning tasks could not be generated
within the time and memory limits.

average time to generate a reversed planning task using the
pruning techniques discussed is about 16 seconds, which is
feasible, but sometimes reversing the task along with the
pruning techniques requires too much time or memory, re-
sulting in 560 instances for which BAE∗ cannot be carried
out. Clearly, this issue needs to be tackled in the future,
which we will go into in more detail in the Discussion.

Search Performance
The natural question is how A∗ compares to BAE∗ in terms
of search performance on classical planning tasks. To eval-
uate the search performance, we compare the coverage, i.e.,
the sum of optimally solved tasks, the number of node ex-
pansions, and the runtime of the considered heuristic search
algorithms.

Coverage Table 1 shows a domain-wise comparison of the
coverage of A∗, A∗b , and BAE∗ using three different heuris-
tics. It can be observed that A∗ performs best overall for each
heuristic. However, the first section of the Table 1 shows
that there are domains where BAE∗ achieves higher cover-
age than A∗, while the second section highlights domains
where BAE∗ clearly falls behind A∗. Interestingly, the per-
formance difference between BAE∗ and A∗ (as well as A∗b)
is largest for the hiPDB heuristic, due to the increased over-
head of computing two abstraction heuristics in both for-
ward and backward directions. Comparing the coverage of
BAE∗ and A∗b , we find that BAE∗ performs better overall
for all three heuristics. Since both BAE∗ and A∗b require a re-
versed task, only the search performance is compared here,
and the advantages of BAE∗ are clearly evident.

Comparing heuristic explicit search with blind symbolic
search (Table 1), we find that bidirectional symbolic search

95

hmax hiPDB hpot Symbolic Search

A∗ A∗b BAE∗ A∗ A∗b BAE∗ A∗ A∗b BAE∗ fw bw bd

barman (34) 11 4 6 4 0 4 4 4 6 11 12 15
blocksworld (35) 21 22 30 28 32 31 28 28 30 21 21 30
driverlog (20) 9 7 11 13 13 14 12 11 13 11 7 12
elevators (50) 35 12 29 43 32 38 28 14 29 31 14 43
ged (20) 15 15 20 19 13 20 19 13 20 15 10 19
logistics (63) 14 12 17 29 31 29 21 24 25 19 19 23
miconic (150) 55 55 55 69 60 66 55 55 60 101 116 116
parcprinter (50) 37 35 31 45 34 32 47 48 48 39 39 35
pegsol (50) 46 16 48 50 44 48 48 40 50 46 24 48
termes (20) 10 8 15 13 12 16 12 11 16 12 8 18
zenotravel (20) 8 7 8 13 12 12 10 8 11 8 8 10

data-network (20) 11 0 0 12 0 0 9 0 0 10 9 13
mprime (35) 24 1 1 24 1 1 23 1 1 22 8 22
mystery (19) 17 3 3 17 3 3 17 3 3 15 8 15
pipes-nt (50) 20 8 11 21 10 11 24 11 11 14 8 15
pipes-t (50) 12 4 5 19 5 5 17 5 5 15 6 16
snake (20) 11 0 0 13 0 0 12 0 0 4 0 4
tidybot (40) 26 1 1 24 1 1 22 1 1 14 9 19

other domains (1070) 465 348 415 553 429 474 581 455 512 553 534 603

Sum (1816) 847 558 706 1009 732 805 989 732 841 961 860 1076

Table 1: A domain-wise comparison between forward A∗, backward A∗b , and BAE∗ with three different heuristics and forward
(fw), backward (bw) and bidirectional (bd) symbolic blind search. The maximum coverage for each heuristic and symbolic
blind search are highlighted separately. We explicitly show coverage results for domains with an interesting coverage difference,
where the first section are domains where BAE∗ performs favorably, and the second section are domains where BAE∗ clearly
falls behind A∗.

hmax hiPDB hpot

A∗ A∗b BAE∗ A∗ A∗b BAE∗ A∗ A∗b BAE∗

Sum (1256) 719 558 706 853 732 805 848 732 841

Table 2: Comparison of the overall coverage between forward A∗, backward A∗b , and BAE∗ with three different heuristics
considering only tasks for which it was possible to generate the reversed task within the given time and memory limits.

is advantageous compared to forward and backward sym-
bolic search almost in every domain, which is not the case
with heuristic explicit search. The question arises whether
this difference is due to the tasks for which it is not possi-
ble to generate the reversed task and thus BAE∗ cannot be
applied. Looking at Table 2, which reports the overall cov-
erage only considering the 1256 tasks for which it was pos-
sible to generate the reversed task within the given time and
memory limits, shows that this is partly the reason, as the
coverage gap between BAE∗ and A∗ gets smaller. Note that
these coverage analyses are based on aggregate data and thus
may not show the complementary strengths of A∗, A∗b and
BAE∗ resulting in different levels of performance on differ-
ent tasks, which we will analyze in more detail below.

Node Expansions To compare the actual search perfor-
mance of BAE∗ with A∗ and A∗b , we consider the number
of node expansions performed until an optimal solution is

found. Figures 2a, 2e and 2i compare the node expansions
of BAE∗ with A∗. Looking at the instances solved by both
BAE∗ and A∗, we see that BAE∗ requires significantly fewer
node expansions than A∗ in several instances, while A∗ re-
quires fewer expansions than BAE∗ in others. A different
picture emerges when comparing the number of node ex-
pansions of BAE∗ and A∗b , where the comparison shifts in
favor of BAE∗ (Figures 2c, 2g, and 2k). Overall, the node
expansion comparisons show mixed results, indicating that
no algorithm strictly dominates another and all have their
merits. However, it appears that when backward search is
possible, BAE∗ often compares favorably to A∗b .

Runtime Considering the overall runtime of the consid-
ered heuristic search algorithms, we can see that the trends
of the node expansion comparison are also present here (Fig-
ures 2b, 2f, and 2j, and Figures 2d, 2h, and 2l.). This is not
surprising, since the number of node expansions usually has

96

100 102 104 106 ∅
A∗ + hmax

100

102

104

106

∅
B

A
E
∗ +

h
m

ax

(a) Node expansions

100 101 102 103 ∅
A∗ + hmax

100

101

102

103

∅

B
A

E
∗ +

h
m

ax
(b) Runtime (seconds)

100 102 104 106 ∅
A∗b + hmax

100

102

104

106

∅

B
A

E
∗ +

h
m

ax

(c) Node expansions

100 101 102 103 ∅
A∗b + hmax

100

101

102

103

∅

B
A

E
∗ +

h
m

ax

(d) Runtime (seconds)

100 102 104 106 ∅
A∗ + hipdb

100

102

104

106

∅

B
A

E
∗ +

h
ip

d
b

(e) Node expansions

100 101 102 103 ∅
A∗ + hipdb

100

101

102

103

∅
B

A
E
∗ +

h
ip

d
b

(f) Runtime (seconds)

100 102 104 106 ∅
A∗b + hipdb

100

102

104

106

∅

B
A

E
∗ +

h
ip

d
b

(g) Node expansions

100 101 102 103 ∅
A∗b + hipdb

100

101

102

103

∅

B
A

E
∗ +

h
ip

d
b

(h) Runtime (seconds)

100 102 104 106 ∅
A∗ + hpot

100

102

104

106

∅

B
A

E
∗ +

h
p

ot

(i) Node expansions

100 101 102 103 ∅
A∗ + hpot

100

101

102

103

∅

B
A

E
∗ +

h
p

ot

(j) Runtime (seconds)

100 102 104 106 ∅
A∗b + hpot

100

102

104

106

∅
B

A
E
∗ +

h
p

ot

(k) Node expansions

100 101 102 103 ∅
A∗b + hpot

100

101

102

103

∅

B
A

E
∗ +

h
p

ot
(l) Runtime (seconds)

Figure 2: Comparison of BAE∗ with forward A∗ and backward A∗b using the max heuristic hmax, the incremental pattern
database heuristic hiPDB and the diverse potentials heuristic hpot. The runtime includes both the time needed to generate the
reversed tasks (for A∗b and BAE∗) and the actual search time. We use ∅ to indicate instances that could not be solved within the
time and memory limits, with the red dots representing instances for which the reversed task could not be generated.

the greatest impact on the overall time required to solve an
instance. Looking at hiPDB (Figures 2f and 2h), the runtime
comparison tends to shift in favor of A∗ and A∗b , since BAE∗
needs to create two abstraction heuristics for the original
task and the reversed task, which can be costly.

Portfolio
To determine and highlight the complementary strength of
A∗, A∗b , and BAE∗, we examine the use of all search strate-
gies as a portfolio (Xu et al. 2008; Ferber and Seipp 2020)
by selecting and executing a single planner based on a clas-
sification rule. To evaluate the potential of such a portfolio,
and thus the usefulness of BAE∗, we consider an oracle that
selects the best search strategy for each instance so that each
instance is solved as fast as possible. Comparing the Single
and Oracle columns of Table 3 shows that choosing between

A∗ and BAE∗ can usually increase the coverage more sig-
nificantly than choosing between A∗ and A∗b (hiPDB is again
an exception due to the increased overhead of computing
two abstraction heuristics for BAE∗). The oracle over A∗
and BAE∗ chooses BAE∗ for about 20% of the instances.
Considering an oracle over all three search algorithms, we
see that the coverage can increase even further, highlighting
the merits of forward, backward, and bidirectional heuristic
search in classical planning. We define a simple classifier
C with the following rule. If the number of initial states of
the reversed planning task is less than 100 and the time re-
quired to generate the reversed planning task is less than one
second, then select BAE∗ (or A∗b), otherwise select A∗. This
simple classifier C over A∗ and BAE∗ improves coverage
for two heuristics, suggesting that in practice it is likely that
adding BAE∗ to a more elaborate portfolio (Sievers et al.

97

Single Simple Classifier C Oracle

A∗ A∗b BAE∗ {A∗, A∗b} {A∗, BAE∗} {A∗, A∗b} {A∗, BAE∗} {A∗, A∗b , BAE∗}
hmax 847 558 706 762 856 848 878 878
hiPDB 1009 732 805 941 986 1026 1022 1031
hpot 989 732 841 945 995 1007 1019 1030

Table 3: Coverage comparison of a portfolio containing A∗, A∗b , and BAE∗ using an oracle selector and a simple classifier C
that attempts to determine whether the planning task is reversible with reasonable resources.

2019) can improve the overall performance.

Discussion and Future Work
BAE∗ has demonstrated a high level of performance that can
outperform A∗ on single-source single-target shortest path
problems (Alcázar, Riddle, and Barley 2020). In classical
planning, the picture looks slightly different. The straight-
forward application of BAE∗ to classical planning tasks re-
quires a reversed task with an explicit state representation
and a potentially exponential size increase. However, our
empirical evaluation shows that when it is possible to gen-
erate such reversed tasks, BAE∗ performs comparably well
to A∗ and even outperforms A∗ in several instances in terms
of node expansions. This naturally gives rise to the need for
a more appropriate generation of reversed tasks. Therefore,
a future research direction is to allow partial states in the
backward search (Alcázar et al. 2013), but this would re-
quire adjusting BAE∗ and investigating whether the higher
cost of testing for intersections of the search frontiers pays
off.

Another interesting future work is to investigate the
lower-bound framework of Alcázar, Riddle, and Barley
(2020) for classical planning, which combines and gener-
alizes the work of Sadhukhan (2012), i.e., BAE∗, with the
work of Kaindl and Kainz (1997). However, this also re-
quires a more in-depth understanding of how to handle re-
versed planning tasks and partial states in backward search.

Finally, in the future, the development of bidirectional
heuristic search algorithms for planning would benefit
greatly from having a more optimized and robust interface
for integration into modern planning systems such as Fast
Downward (Helmert 2006). Our current implementation of
BAE∗ can still be improved to be more efficient compared
to Fast Downward’s highly optimized forward search.

Conclusion
In this paper we have analyzed BAE∗ for classical planning
in theory and practice. For a straightforward application of
BAE∗, we defined a reversed planning task that does not rely
on partial states but has a potentially exponential increase in
size. We have alleviated this problem to some extent by us-
ing mutexes and reachability analysis, which significantly
reduce the number of goal states, making it possible to cre-
ate such a reversed task in practice for many domains. Our
empirical evaluation shows that BAE∗ can expand signifi-
cantly fewer nodes compared to forward and backward A∗
in multiple domains, demonstrating its usefulness. Overall,

our analysis shows the merits of forward and backward A∗
as well as the usefulness of bidirectional heuristic search in
the form of BAE∗ for classical planning.

Acknowledgments
This research was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215. David Speck
was supported by the German Research Foundation (DFG)
as part of the EPSDAC project (MA 7790/1-1).

References
Alcázar, V. 2021. The Consistent Case in Bidirectional
Search and a Bucket-to-Bucket Algorithm as a Middle
Ground between Front-to-End and Front-to-Front. In Proc.
ICAPS 2021, 7–15.
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting Regression in Planning. In Proc. IJCAI
2013, 2254–2260.
Alcázar, V.; Riddle, P. J.; and Barley, M. 2020. A Unify-
ing View on Individual Bounds and Heuristic Inaccuracies
in Bidirectional Search. In Proc. AAAI 2020, 2327–2334.
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proc. ICAPS 2015, 2–6.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Barker, J. K.; and Korf, R. E. 2015. Limitations of Front-
To-End Bidirectional Heuristic Search. In Proc. AAAI 2015,
1086–1092.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ, 129(1): 5–33.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In Proc. IJCAI 2017, 489–
495.
Dijkstra, E. W. 1959. A Note on Two Problems in Connex-
ion with Graphs. Numerische Mathematik, 1: 269–271.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient Conditions for Node Expansion in
Bidirectional Heuristic Search. In Proc. ICAPS 2017, 79–
87.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2015. BDDs
Strike Back (in AI Planning). In Proc. AAAI 2015, 4320–
4321.

98

Ferber, P.; and Seipp, J. 2020. Explainable Planner Se-
lection. In ICAPS Workshop on Explainable AI Planning
(XAIP).
Fišer, D.; Torralba, Á.; and Hoffmann, J. 2022. Operator-
Potential Heuristics for Symbolic Search. In Proc. AAAI
2022. To appear.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning, volume 7
of Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that is
guaranteed to meet in the middle. AIJ, 252: 232–266.
Hu, K.; and Speck, D. 2022. Code and data for the SOCS
2022 paper “On Bidirectional Heuristic Search in Classical
Planning: An Analysis of BAE*”. https://doi.org/10.5281/
zenodo.6570805.
Kaindl, H.; and Kainz, G. 1997. Bidirectional Heuristic
Search Reconsidered. JAIR, 7: 283–317.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and Dynamic-Gamer – Symbolic Search at IPC 2014. In
IPC-8 planner abstracts, 77–84.
Kuroiwa, R.; and Fukunaga, A. 2020. Front-to-Front Heuris-
tic Search for Satisficing Classical Planning. In Proc. IJCAI
2020, 4098–4105.
Kwa, J. B. H. 1989. BS*: An Admissible Bidirectional
Staged Heuristic Search Algorithm. AIJ, 38(1): 95–109.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1969. Bi-Directional And Heuristic Search In Path
Problems. Technical Report 104, Stanford Linear Accelera-
tor Center.
Pohl, I. 1971. Bi-directional search. In Meltzer, B.; and
Michie, D., eds., Machine Intelligence 6, 127–140. Ameri-
can Elsevier.
Russell, S.; and Norvig, P. 2003. Artificial Intelligence — A
Modern Approach. Prentice Hall.
Sadhukhan, S. K. 2012. A new Approach to bidirectional
heuristic search using error functions. In 1st International
Conference on Intelligent Infrastructure at the 47th Annual
National Convention Computer Society of India (CSI-2012),
239–243.
Sadhukhan, S. K. 2013. Bidirectional Heuristic Search
based on Error Estimate. CSI Journal of Computing, 2(1–
2): S1:57–S1:64.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Proc.
ICAPS 2015, 193–201.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In Proc. AAAI 2019,
7715–7723.
Speck, D. 2022. Symbolic Search for Optimal Planning with
Expressive Extensions. Ph.D. thesis, University of Freiburg,
Germany.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 91–94.
Speck, D.; Geißer, F.; and Mattmüller, R. 2020. When Per-
fect Is Not Good Enough: On the Search Behaviour of Sym-
bolic Heuristic Search. In Proc. ICAPS 2020, 263–271.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Proc. AAAI 2020, 9967–9974.
Suda, M. 2014. Property Directed Reachability for Auto-
mated Planning. JAIR, 50: 265–319.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional A*
Planner. In IPC-8 planner abstracts, 105–109.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
AIJ, 242: 52–79.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2008. SATzilla: Portfolio-based Algorithm Selection for
SAT. JAIR, 32: 565–606.

99

