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Abstract
Cost-optimal planning is at the heart of planning research,
with many existing planners that produce provably optimal
solutions. While some applications pose additional restric-
tions, such as producing shortest (in the number of actions)
among the cost-optimal plans, standard cost-optimal planning
does not provide such a guarantee. We discuss two possible
approaches to produce provably the shortest among the cost-
optimal plans, one corresponding to an instantiation of cost-
algebraic A∗, the other based on a cost transformation. We
formally prove that the new cost-transformation method in-
deed produces the shortest among the cost-optimal plans and
empirically compare the performance of the approaches in
different configurations.

Introduction
The aim of classical planning is to determine a plan, which
is a sequence of deterministic actions that leads from a given
initial state to a goal state. Each action is associated with a
non-negative cost and the cost of a plan is defined as the sum
of these action costs. In the special case of optimal planning,
only the plans with minimal cost among all plans are con-
sidered valid solutions.

Alternative optimization criteria have been considered in
the literature: in multi-objective search (Stewart and White
1991; Mandow and la Cruz 2005) there are multiple – typi-
cally incomparable and conflicting – cost functions and the
aim is to identify all plans with non-dominated cost vectors.
Other recent planning variants where the solution consists of
entire sets of plans are diverse planning (Nguyen et al. 2012)
with the aim to identify a set of qualitatively different plans,
top-k planning (Katz et al. 2018) with the aim to identify a
set of plans such that no better plan outside the set exists,
and top-quality planning (Katz, Sohrabi, and Udrea 2020)
with the aim to identify all plans of some bounded quality.

In this paper, we consider the problem of finding a cost-
optimal plan that has a minimal number of actions among all
cost-optimal plans, or shortest cost-optimal plan. This is for
example required as a subroutine for top-quality planning
(Katz, Sohrabi, and Udrea 2020; Katz and Sohrabi 2022)
but also an interesting property if the plan gets presented to
humans, as it is for example the case in human-in-the-loop
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planning or explainable AI planning where the optimality is
measured with respect to the observer model (Chakraborti
et al. 2021).

Note that the problem of finding a shortest cost-optimal
plan is different from the multi-objective case. We indeed
have two cost measures here, namely plan cost and plan
length, but these are not pari passu. If there is a plan π of
length 1 (i.e. a single action application) and cost 5 but there
is another plan of cost 4 then π is not considered a valid so-
lution, even if the other plan consists of hundreds of actions.
So we do not give up the requirement of cost-optimal plans,
we only have the additional requirement that among these
we want a shortest one in the number of actions.

This concept of shortest cost-optimal plans is loosely re-
lated to the concept of strongly optimal plans in stubborn set
pruning (Wehrle and Helmert 2014). These are optimal plans
with a minimal number of zero-cost actions. The difference
is that we consider the number of all actions, independent
of their cost. Fišer, Torralba, and Shleyfman (2019) on the
other hand, define the concept of strongly optimal plans to
be optimal plans with a minimal number of actions. To avoid
confusion, we use the notion of shortest cost-optimal plans.

Edelkamp, Jabbar, and Lluch Lafuente (2005) already
considered the problem of finding optimal paths relative to
cost notions that can be very different from the standard
sum of action costs. They introduce so-called cost algebras,
which are a very general concept covering a wide range of
cost measures, including the number of actions as well as
the sum of action costs. Moreover, both these cost measures
are strictly isotone, a property that Edelkamp, Jabbar, and
Lluch Lafuente identified to be sufficient for their prioritized
Cartesian product being again a cost algebra. This prioritized
Cartesian product corresponds exactly to the case we con-
sider in this paper: Prefer cheaper plans, and among equally
cheap plans, prefer the shorter one.

The paper is structured as follows: We first formally in-
troduce the problem and present the cost-algebraic A∗ algo-
rithm in the specific instantiation for our cost functions. We
then present a cost transformation that allows to solve the
problem with standard A∗ and discuss different ways to set
parameters for the approach. For integer costs, we show that
a specific configuration of cost-algebraic A∗ is equivalent to
a certain configuration of the cost transformation approach.
Finally, we empirically evaluate the different approaches.
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Shortest Cost-Optimal Planning Problem
We consider tasks that are given by their transition system
Π = 〈S,A, T, cost, s0, S∗〉, where S is a finite set of states,
s0 ∈ S is the initial state and S∗ ⊆ S is the set of goal
states. Set A is the finite set of actions, where the action
cost function cost : A → R0+ assigns every action a non-
negative cost. The transition relation T ⊆ S × A × S is
deterministic, i.e. for every state s and action a, there is at
most one s′ with (s, a, s′) ∈ T . If there is such an s′, we say
that a is applicable in s and that s′ is the successor state of
applying a in s. An s-plan is a sequence of actions that is
consecutively applicable in state s and where the final state
is a goal state. A plan is an s0-plan. We will sometimes focus
on simple applicable action sequences, i.e. applicable action
sequences that traverse no state more than once.

For defining the cost of an action sequence, we extend
the cost function from single actions to action sequences as
cost(〈a1, . . . , an〉) :=

∑
i=1,...,n cost(ai). With |π| we de-

note the length of action sequence π, i.e. |〈a1, . . . , an〉| = n.
We denote by ≤Π the partial order of action sequences

defined by their cost, i.e., π ≤Π π′ iff cost(π) ≤ cost(π′).
By�Π we denote the partial order defined by their costs and
length, i.e., π �Π π′ if cost(π) < cost(π′) or if cost(π) =
cost(π′) and |π| ≤ |π′|.

In standard cost-optimal planning we must for a given
task Π identify a plan that is minimal among all plans with
respect to ≤Π or detect that the task is unsolvable, i.e. it has
no plan. In contrast, in the shortest cost-optimal planning
problem we must find a plan for Π that is minimal among all
plans with respect to �Π or again detect Π as unsolvable.

Cost-Algebraic Approach
As already mentioned in the introduction, our shortest cost-
optimal planning problem is a special case of the problems
covered by cost-algebraic heuristic search (Edelkamp, Jab-
bar, and Lluch Lafuente 2005).

We will now briefly describe the specific instantiation of
the cost-algebraic A∗ algorithm for our scenario.

First, we need a heuristic for the cost-algebraic problem.
Such a cost-algebraic heuristic maps every state to a pair
〈hc, hd〉 ∈ R0+ × R0+. The heuristic is admissible if for
every state s it holds that hc ≤ c∗ and hd ≤ d∗, where c∗ is
the cost of a cheapest plan for state s and d∗ is the length of
a shortest among these cheapest plans.

The standard A∗ algorithm (Hart, Nilsson, and Raphael
1968) maintains an open list of search nodes, where each
search node is associated with a state and with an implicit
path from the initial state to this state. In each iteration,
A∗ pops a node from the open list, which in the standard
scalar case is ordered by the f -values of the nodes. Here,
f = gc+hc, where gc is the cost of the associated path from
the initial node to the associated state and hc is the heuristic
estimate for this state. If the popped node is a goal node, the
search terminates. Otherwise it expands the node by generat-
ing all successor nodes and adding the expanded state to the
closed list. Each generated node that is not associated with a
closed state is added to the open list. Also nodes with closed
states are added to open, if the associated path to the state is

cheaper than the previous one. This is called reopening and
only necessary if the heuristic does not have the additional
property of being consistent.

The cost-algebraic A∗ variant extends standard A∗ in two
ways: the open list prioritizes by 〈fc, fd〉, where fc = gc+hc
and fd = gd + hd with cost-algebraic heuristic estimate
〈hc, hd〉, gc being the cost of the associated path and gd
being the length of the associated path. So fc corresponds
to the f -value in the standard case and fd is the analogous
value in terms of plan length. Pair 〈fc, fd〉 has a higher pri-
ority than 〈f ′c, f ′d〉 if fc < f ′c or if fc = f ′c and fd < f ′d.

The second extension is the reopening criterion. A state is
not only reopened if the search encounters a cheaper path to
the state but also if it encounters an equally cheap but shorter
path to the state.

The results by Edelkamp, Jabbar, and Lluch Lafuente im-
ply that with these two changes, the algorithm is guaranteed
to produce shortest cost-optimal plans.

To determine an admissible cost-algebraic heuristic in
practice, we can use any (standard) admissible heuristic to
determine the cost estimate hc. For the distance estimate hd,
it is not necessary to only consider minimum-cost plans but
also a lower-bound on the length of any plan will be an ad-
missible estimate (but possibly lower than necessary). For
this reason, we can simply use a standard admissible heuris-
tic, but evaluate it with respect to a different cost function
that assigns every action a cost of 1.

Of course the computation of an additional distance esti-
mate causes computational overhead and it is not immedi-
ately obvious that it will pay off: since the first component
fc dominates the ordering of the open list, the A∗ search
will have to consider all action sequences where fc is strictly
lower than the cost of an cost-optimal plan. Hence, the dis-
tance information can only be beneficial for the ordering
on the last fc layer. For this reason, we will also consider
the extreme case where we set the second heuristic compo-
nent hd to constant 0. This is still an admissible estimate,
so also this much cheaper configuration guarantees shortest
cost-optimal plans.

Cost Transformation Approach
The second approach that we consider will use standard
cost-optimal solvers but ensures shortest cost-optimal plans
by means of a transformation of the action cost function.
Exchanging the cost function does not alter the set of ap-
plicable action sequences but will only influence what plans
are considered optimal. The idea of the transformation is to
increase the cost of every action by a small ε, so that a plan
with n actions will accumulate an additional cost of n ·ε. We
will choose ε small enough so that for any relevant action
sequences π and π′, if π has originally been strictly cheaper
than π′, this will stay true also with the additionally incurred
cost.

Theorem 1 For every planning task Π there is a task Π′ that
only differs from Π in the action cost function, such that for
all applicable simple action sequences π and π′ it holds that
π �Π π′ iff π ≤Π′ π′.
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Proof: Consider planning task Π = 〈S,A, T, cost, s0, S∗〉.
Let P be the set of all applicable simple action sequences in
Π. Since the sequences are simple, the length of any π ∈
P is bounded by the number of states |S|. Since moreover
the set of actions A is finite, P is a finite set. Let δ > 0
be smaller or equal to the smallest non-zero cost difference
|cost(π) − cost(π′)| between any two sequences π, π′ ∈ P
with cost(π) 6= cost(π′). Let L be larger than the length
difference ||π| − |π′|| of any two sequences in π, π′ ∈ P.

We define ε := δ
L > 0 and a new cost function cost+ε as

cost+ε(a) = cost(a) + ε. Let Π′ be defined as Π only with
cost function cost+ε, i.e. Π′ = 〈S,A, T, cost+ε, s0, S∗〉.

Let π, π′ ∈ P. We distinguish two cases.
If cost(π) = cost(π′), then π �Π π′ iff |π| ≤ |π′|

iff cost+ε(π) = cost(π) + ε|π| ≤ cost(π′) + ε|π′| =
cost+ε(π

′) iff π ≤Π′ π′.
For the case cost(π) 6= cost(π′), we consider the two

directions separately:
If π �Π π′ and cost(π) 6= cost(π′) then cost(π) <

cost(π′). Since the cost difference cost(π′)−cost(π) is non-
zero, it must be ≥ δ. By the choice of L, |π| − |π′| < L.
We get that cost+ε(π′) − cost+ε(π) = cost(π′) + ε|π′| −
cost(π) − ε|π| = cost(π′) − cost(π) − ε(|π| − |π′|) >
cost(π′)−cost(π)−εL = cost(π′)−cost(π)−δ ≥ 0. Over-
all, this implies cost+ε(π′) > cost+ε(π), thus π ≤Π′ π′.

If π ≤Π′ π′ then cost+ε(π) ≤ cost+ε(π
′). By the defini-

tion of cost+ε, we have cost(π) + ε|π| ≤ cost(π′) + ε|π′|
(*). Since |π′|−|π| < L, it holds that ε(|π′|−|π|) < εL = δ.
With (*), we get δ > ε(|π′| − |π|) ≥ cost(π) − cost(π′).
By the definition of δ, δ > cost(π) − cost(π′) implies that
cost(π) ≯ cost(π′). Since we currently consider the case
where cost(π) 6= cost(π′), this implies cost(π) < cost(π′)
and thus π �Π π′. �

Based on Theorem 1, one can find shortest cost-optimal
plans by finding cost-optimal plans for the transformed cost
task. The restriction to simple action sequences is not a lim-
itation for this purpose: shortest cost-optimal plans for the
original task are always simple because otherwise there were
shorter plans of equal or lower cost (cutting out the cycle);
cost-optimal plans in the transformed task are simple be-
cause there are no 0-cost actions in this task (which could
be used to form a cycle without increasing the cost).

The proof of the theorem is somewhat unsatisfactory, be-
cause we only establish the existence of a suitable value ε.
As the length of any simple applicable action sequence is
between 0 and |S| − 1, we can use the trivial bound of |S|
for L. For the common case of integer action costs, we can
set δ to 1, which gives ε = 1/|S|. But since |S| is typically
very high, ε would be very small. This is problematic be-
cause planners often only support integer costs, so we need
to scale up the cost function cost+ε to integers, which can
lead to extremely high action costs and overflow problems in
the planner. For this reason, we are interested in a cost func-
tion that serves the same purpose with lower action costs.

We actually do not need the full generality of Theorem 1
because we do not need to cover all applicable simple action
sequences but only those relevant to the search. For this rea-
son, we first revisit the proof of Theorem 1 for a task with

integer costs to identify a sufficient requirements for ε and
each two applicable simple action sequences that we com-
pare during the search:

• If cost(π) = cost(π′) then any positive ε is sufficient.
• For π �Π π′ implying π ≤Π′ π′ if cost(π) 6= cost(π′),

we only need that ε(|π| − |π′|) < δ. With integer costs
and δ = 1, it is thus sufficient for the proof if the length
difference of the compared action sequences is strictly
smaller than 1/ε.

• For π ≤Π′ π′ implying π �Π π′ if cost(π) 6= cost(π′),
we only exploit from ε that ε(|π′| − |π|) < δ. Again it is
sufficient if the length difference of the compared action
sequences is strictly smaller than 1/ε.

So overall, it is sufficient if ε > 0 and the length differ-
ence of any two compared action sequences is smaller than
1/ε. Intuitively, this makes sense because the additional ac-
tion cost we incur when accounting for the length of the se-
quence will never outweigh the original cost of any action
application, at least on the action sequences we consider.

What action sequences must cost-algebraic A∗ consider?
Obviously, those where the search node would actually be
popped from the open list in cost-algebraic A∗ are sufficient.
For standard scalar A∗, it is well known that it expands all
nodes that have a lower f -value than the optimal solution
cost C∗, and a subset of the nodes, where the f -value equals
C∗ (last f -layer; depending on tie-breaking) but no nodes
with higher f -value. Since in cost-algebraic A∗ the fc-value
for the cost dominates the ordering of the open list, it also
must expand all nodes with fc < C∗ but from the nodes
on the last fc-layer (with fc = C∗), it will only consider a
subset of those, where fd is less than or equal to the length
of a shortest optimal plan. We do not have much information
about the heuristics for cost and distance, but we know that
their estimates are non-negative. So we can conclude that
cost-algebraic A∗ will never pop an action sequence π from
the open list for which cost(π) > C∗.

Let us now combine these two lines of thought and let M
be some integer that is strictly larger than the length of any
applicable simple action sequence π with cost(π) ≤ C∗.

From a theoretical perspective, we can always use |S|
for M but this more precise definition allows us to ex-
ploit additional insights we might have into the problem
at hand. With our previous consideration, any ε > 0 with
M ≤ 1/ε will work in the transformation (still consider-
ing tasks with integer costs). In particular, we can set ε to
1/M . With this choice, we get cost+ε(a) = cost(a) + 1/M
and Mcost+ε(a) = Mcost(a) + 1. Since all action costs
with cost+ε are positive, scaling them with constant fac-
tor M does not affect the ordering of action sequences by
their cost. Overall, we observe that with integer action costs
this functionMcost+ε (henceforth referred to as costM ) is a
cost function suitable for the cost-transformation-based ap-
proach to finding shortest optimal plans. Moreover, it can
also be used with planners that only support integer action
costs, because it maps only into the integers.

In what follows, we will frequently refer to this cost func-
tion and the cost transformed task. Therefore, we include it
in the following definition.
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Definition 1 For task Π = 〈S,A, T, cost, s0, S∗〉 and M ∈
N>0, we define cost function costM as costM (a) = M ·
cost(a)+1 and task ΠM as ΠM = 〈S,A, T, costM , s0, S∗〉.

So far our discussion was driven by the behaviour of cost-
algebraic A∗ and indeed this will be relevant for Theorem
3 that establishes that in a certain configuration both ap-
proaches will behave equally. If we now focus only on the
resulting scalar problem and the aim to identify shortest opti-
mal plans, can we decrease M below the previous criterion?

Consider applicable action sequences π of length |π| ≥
M and π′ with cost(π′) > cost(π) and length |π′| <
|π| − M(cost(π′) − cost(π)). If both sequences are ac-
tual plans, π would be better wrt. the optimization criterion
because of its lower cost. But under cost costM , we have
π′ ≤ΠM

π, so A∗ potentially would not consider π but ter-
minate with π′. Is this always a problem or put differently,
are there applicable action sequences a search could skip
while still finding an optimal solution? Obviously, all action
sequences that cannot be extended to an optimal plan can be
pruned from the search space without harming completeness
or the optimality guarantee. Due to the monotonicity of the
plan length, this is the case for all action sequences that are
longer than the length of a shortest optimal plan.

Hence, if we are only interested into finding a shortest
optimal plan for task π and we know that the solution will
be shorter than some M ∈ N then we can simply solve the
induced problem ΠM with standard A∗.

Heuristics
If we use a heuristic search planner to solve the cost-
transformed task, we have some freedom what cost func-
tion we use for the heuristic computation. The first and most
obvious option we will consider is to compute the heuristic
estimates with respect to the transformed cost function.

However, with this cost function there can be a huge num-
ber of action sequences that all exhibit different costs. This
can slow down the heuristic computation. For this reason,
we will also consider the alternative approach of computing
heuristic estimates with the original cost function and scal-
ing them by M . These estimates are admissible with respect
to the transformed cost:

Theorem 2 Consider task Π with cost function cost and a
M ∈ N>0. If h is an admissible estimate for state s in Π
then Mh is an admissible estimate for s in ΠM .

Proof: Let π be a plan for state s that is optimal with re-
spect to cost function costM and let h be an admissible esti-
mate for s wrt. to cost function cost. Since π is an s-plan, it
holds that cost(π) ≥ h. As costM (π) = Mcost(π) + |π| ≥
Mcost(π) ≥Mh, value Mh is an admissible estimate for s
wrt. cost function costM . �

Interestingly, in the typical setup with integer action costs
and integer heuristic estimates, A∗ with this second heuris-
tic approach leads to the same search behaviour as cost-
algebraic A∗ using the same heuristic for cost and the blind
estimator that always sets hd to 0 for distance.

Theorem 3 Consider task Π = 〈S,A, T, cost, s0, S∗〉 with
cost : A → N0, heuristic hc : S → N0 that is admissible
wrt. cost and heuristic hd with hd(s) = 0 for all s ∈ S. Let l
be the length of the longest action sequence associated with
a search node expanded by cost-algebraic A∗ on Π with the
given heuristics.

For integer M > l, standard A∗ on ΠM with heuristic
Mhc will expand nodes in the same order as cost-algebraic
A∗ on Π with heuristics hc and hd if the algorithms use the
same-tie breaking.

Proof: We show the theorem by induction over the expan-
sions of the two A∗ variants. Let Open and Closed be the
open and closed list of the standard A∗ configuration and
Openca and Closedca be the lists of the cost-algebraic A∗
configuration. Our induction hypothesis is that after k ex-
pansions, Open will contain the same nodes as Openca and
Closed will contain the same nodes as Closedca. Moreover,
if a node n has priority 〈pc, pd〉 in Openca then node n has
priority Mpc + pd in Open.

After 0 expansions, both closed lists are empty and both
open lists contain the node for the initial state, associated
with the empty action sequence. In the cost-algebraic con-
figuration, it has priority 〈hc(s0), 0〉 and in the scalar con-
figuration, it has priority Mhc(s0).

For the inductive step, we first show that both versions can
(and with equal tie-breaking will) expand the same node.

If n is a node with minimum priority 〈pc, pd〉 in Openca,
then all other nodes n′ have priority 〈p′c, p′d〉 with (1) p′c >
pc or with (2) p′c = pc and p′d ≥ pd. For all nodes n′ with
(2),Mpc+pd ≤Mp′c+p′d trivially holds, so Open does not
prefer n′ over n. For all nodes n′ with (1) we know that p′c ≥
pc + 1 because the priorities are integers. Hence, Mp′c ≥
Mpc +M . Note that pd and p′d correspond to the lengths of
the associated paths. By the requirements on l and M , this
implies that pd−p′d < l < M , soMp′c > Mpc+pd−p′d or,
equivalently,M ′pc+p′d > Mpc+pd. These are the priorities
of n′ and n in Open, so n must be preferred over n′.

Let n be a node with minimum priority in Open, let
π be the associated path and s be the reached state. For
all other nodes n′ (with π′ and s′ being defined anal-
ogously), it holds that Mcost(π) + |π| + Mhc(s) ≤
Mcost(π′) + |π′| + Mhc(s

′) (*). The corresponding pri-
orities of the nodes in Openca are 〈cost(π) + hc(s), |π|〉 and
〈cost(π′) + hc(s

′), |π′|〉, respectively. If cost(π) + hc(s) <
cost(π′) + hc(s

′), the Openca must trivially prefer n over
n′. If cost(π) + hc(s) = cost(π′) + hc(s

′) then (*) im-
plies that |π| ≤ |π′|, so n′ again does not get preferred
over n. The case cost(π) + hc(s) > cost(π′) + hc(s

′)
is impossible: costs and heuristic estimates are integers, so
cost(π) + hc(s) + 1 ≥ cost(π′) + hc(s

′). Multiplying by
M and combining with (*) gives |π′| − |π| ≥ M but by the
requirements on l and M , |π′| − |π| < M (or no node with
a sequence of length |π′| gets expanded, also preventing n′).

So both configurations select the same node n for expan-
sion and subsequent addition to the closed list. Since the cost
functions do not affect the set of successor nodes but only
the associated costs, both variants will consider the same
successors. Let π be the action sequence associated with n
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Figure 1: Number of expanded nodes (left) and total time (right), comparing the cost-algebraic approach (ca) with informed
distance estimates to the (ca0) approach using constant 0.

and consider the successor with action a, leading to state
s. If the corresponding successor node n′ is not yet in the
closed list (which contains the same nodes in both configura-
tion), both configurations add it to their open list. In the cost-
algebraic configuration, n′ has priority 〈cost(π)+cost(a)+
hc(s), |π| + 1〉. The same node in the scalar configuration
has priority Mcost(π) + |π|+Mcost(a) + 1 +Mhc(s) =
M(cost(π) + cost(a) + hc(s)) + (|π|+ 1), thus maintain-
ing the connection from the induction hypothesis. In the fol-
lowing we refer to the action sequence for n′ by π′ (= π
extended with a).

Consider the case that swas already included in the closed
lists, where at the last expansion of a corresponding node it
was associates with some action sequence π′′. This addition
to closed has happened after the same number of expansions
with the same action sequence π′′ in both configurations. We
need to show that either both of the configurations add n′ to
their open list (re-opening the state) or none of them.

The scalar configuration adds n′ to Open iffMcost(π′)+
|π′| < Mcost(π′′) + |π′′| (**). The cost-algebraic config-
uration adds n′ to Openca iff cost(π′) < cost(π′′) or if
cost(π′) = cost(π′′) and |π′| < |π′′|. We now show that
the two conditions are equivalent.

(⇒) From (**), we get that M(cost(π′) − cost(π′′)) <
|π′′| − |π′|. Since |π′| ≤ l, |π′′| ≤ l and M > l, it holds that
|π′′|−|π′| < M . Together, we get cost(π′)−cost(π′′) < 1,
so cost(π′) < cost(π′′) + 1. As all values are integers, this
implies cost(π′) ≤ cost(π′′). If cost(π′) = cost(π′′) then
(**) directly implies |π′| < |π′′|.

(⇐) If cost(π′) = cost(π′′) and |π′| < |π′′|, we get
(**) directly. If cost(π′) < cost(π′′), then cost(π′) + 1 ≤
cost(π′′) because costs are integers. Thus Mcost(π′) +
M ≤ Mcost(π′′) and since (by the analogous reasoning
as in the other direction) |π′| − |π′′| < M , we get (**). �

Experimental Evaluation
To empirically compare the various suggested methods, we
have implemented these methods on top of the Fast Down-
ward planning system (Helmert 2006). The code is avail-
able at https://github.com/ibm/shortest-optimal-downward.
The experiments were performed on Intel(R) Xeon(R) Gold
6248 CPU @2.50GHz machines, with the time and mem-
ory limit of 30min and 3.5GB, respectively. The bench-
mark set consists of all STRIPS benchmarks with non-unit
costs (with the exception of parcprinter1 ) from optimal
tracks of International Planning Competitions 1998-2018,
a total of 587 tasks in 28 domains. We exclude unit-cost
tasks because for these all optimal plans are shortest opti-
mal plans. As all tasks have integer costs and Fast Down-
ward supports integer costs only, in order to obtain a cost
transformation into integer values, we assume a bound of
M = 10000 on the plan length. Transformed action costs
costM (a) are therefore 10000 · cost(a) + 1. As there are
no existing planners that produce shortest optimal plans, the
suggested methods are compared to each other, with a va-
riety of admissible heuristics. The heuristics we experiment
with are the blind heuristic, LMcut (Helmert and Domsh-
lak 2009), merge-and-shrink abstraction (denoted by M&S)
(Helmert, Haslum, and Hoffmann 2007), counterexample-
guided Cartesian abstraction refinement (denoted by CE-
GAR) (Seipp and Helmert 2018), hmax (Bonet and Geffner
2001), and pattern database heuristic iPDB (Haslum et al.
2007). We measure the search progress in terms of the num-
ber of expanded nodes as well as the number of heuris-
tic evaluations; for the required time, we distinguish search

1The parcprinter domain has actions with costs in hundreds of
thousands. After cost transformation the domain would have ac-
tions with costs in billions.
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LMcut M&S CEGAR hmax iPDB
Coverage ca0 ca ca0 ca ca0 ca ca0 ca ca0 ca
data-network18 (20) 12 12 9 9 14 14 11 11 12 11
elevators08 (30) 22 19 15 15 20 20 17 17 23 23
elevators11 (20) 18 17 12 12 17 17 14 13 18 18
floortile11 (20) 7 6 4 4 2 2 6 6 2 2
floortile14 (20) 6 5 2 2 0 0 5 5 0 0
openstacks08 (30) 22 16 22 22 22 20 22 21 22 22
openstacks11 (20) 17 10 17 17 17 15 17 16 17 17
openstacks14 (20) 3 1 3 3 3 3 3 3 3 3
organic-s-sp18 (20) 14 14 7 6 9 9 19 18 7 6
pegsol08 (30) 27 27 29 28 28 28 27 27 29 29
pegsol11 (20) 17 17 19 18 18 18 17 17 19 19
petri-net-align18 (20) 9 8 4 4 1 1 11 9 0 0
scanalyzer-08 (30) 11 9 12 12 12 12 9 9 13 13
scanalyzer11 (20) 7 6 9 9 9 9 6 6 10 10
sokoban08 (30) 29 28 27 27 23 23 28 28 30 29
sokoban11 (20) 20 20 20 20 20 20 20 20 20 19
spider18 (20) 11 8 13 13 11 10 9 8 13 3
tetris14 (17) 5 5 7 7 9 8 9 7 1 1
transport11 (20) 6 6 6 6 6 6 6 6 12 11
transport14 (20) 6 6 7 7 7 7 8 6 9 9
woodworking08 (30) 13 17 14 14 10 11 10 10 12 12
woodworking11 (20) 8 12 9 9 5 6 5 5 7 7
Sum other (90) 30 30 34 34 30 30 34 34 37 37
Sum (587) 320 299 301 298 293 289 313 302 316 301

Table 1: Per-domain coverage for the cost algebra methods.

time (used by the A∗algorithms) and total time (including
heuristic pre-computations); coverage refers to the number
of problems solved.

Cost-Algebraic Approach
As discussed earlier, using a distance estimator in cost-
algebraic A∗ can only be beneficial for the ordering of the
last fc layer, so it is worth evaluating whether the additional
effort for a distance estimator still pays off.

For this reason, we compare the cost-algebraic approach
(ca) with informative heuristic functions for both, cost and
distance estimates, to the one that only uses an informed
heuristic for cost estimates but constant 0 for the distance
estimate (ca0). For simplicity, we use the same heuristic for
both cost and distance estimates, simply replacing all action
costs with 1 for the distance estimate. Figure 1 (left) com-
pares ca-LMcut to ca0-LMcut in terms of expanded nodes:
when using an additional heuristic for distance estimation
the number of expanded nodes indeed decreases. However,
as per-node evaluation time also increases for most tasks this
does not pay off in terms of total time (Figure 1, right). This
translates directly to the coverage of the two approaches:
ca-LMcut solves 299 tasks overall, compared to 320 of
ca0-LMcut. The only domains where ca-LMcut has a better
coverage are the woodworking domains (17 vs. 13 and 12

vs. 8). Table 1 shows per-domain coverage results for multi-
ple heuristics (“other” aggregates domains where ca and ca0

perform equally). The best results per domain and heuris-
tic are bolded. The results are consistent across the various
heuristics. Notably, the largest difference in coverage is on
the spider domain, 13 for ca0-iPDB vs. 3 for ca-iPDB.

Overall, the reduction in the search effort from using an
informed distance estimator does not to outweigh its com-
putation cost, both time- and coverage-wise, for all tested
heuristics. For this reason, in the following experiments we
will only compare to the better-performing variant ca0.

Cost-Transformation Approach
For the cost-transformation-based approach, there is only a
single heuristic for estimating the cost to go, but no sepa-
rate distance estimator. One obvious option for the heuris-
tic is to compute it directly from the cost-transformed task
(= the standard behaviour of Fast Downward). We denote
this configuration by ct. The other option is to use the cost-
transformed task for the computation of g-values in the
search but to compute the heuristic estimates on the original
task and scaling them with constant factor M . The result-
ing estimates are admissible for the cost-transformed task
by Theorem 2. We denote this second approach by wct.

Table 2 shows the per-domain coverage comparison. Ob-
serve that, with the exception of hmax heuristic, these two
methods are quite complementary across the tested heuris-
tics, and the difference in coverage on a particular domain
can be quite large.

While the heuristic computed directly on the cost-
transformed task (ct) is more informed, the transformed cost
function can have a negative impact on the computation-time
of some heuristics. We observe that the overhead incurred
by the cost transformation is very different for the different
heuristics. But also if we fix the heuristic, it depends on the
domain whether the impact is positive or negative. Both ef-
fects are very pronounced in the LMcut heuristic, hence we
present more details for this heuristic. Figure 2 shows the
details of the comparison in terms of the number of heuris-
tic evaluations per second2, as well as the number of ex-
panded nodes. We see the dominance of the heuristic com-
putation used in ct clearly reflected in the number of expan-
sions (right). But if we have a look at the time required for
the heuristic computation (left), we observe that the compu-
tation on the original cost function with subsequent scaling
is almost consistently faster. The speedup is most prominent
on the openstacks domains, which also benefit most from the
wct configuration in terms of coverage.

Overall, the direct computation is better-informed but
can have a negative impact on the computation time with
some heuristics. Whether the potentially lower computation
time of the scaling approach outweighs the somewhat lower
heuristic guidance depends on the balance of the two effects
(speedup and impact on guidance), which varies from do-
main to domain.

2Tasks with search time under 1 second or the number of eval-
uation is under 100 were not plotted.
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blind LMcut M&S CEGAR hmax iPDB
Coverage ct wct ct wct ct wct ct wct ct wct ct wct
data-network18 (20) 7 7 12 12 9 9 13 14 11 11 12 12
elevators08 (30) 14 14 21 22 15 16 21 20 17 17 25 23
elevators11 (20) 12 12 16 18 13 13 18 17 14 14 19 18
floortile11 (20) 2 2 7 7 4 4 2 2 6 6 3 2
openstacks08 (30) 22 22 15 22 22 22 25 22 22 22 16 22
openstacks11 (20) 17 17 10 17 17 17 19 17 17 17 11 17
openstacks14 (20) 3 3 1 3 3 3 4 3 3 3 2 3
organic-s-sp18 (20) 10 10 13 14 6 6 9 9 19 19 6 7
pegsol08 (30) 27 27 27 27 29 29 28 28 28 28 30 29
pegsol11 (20) 17 17 17 17 19 19 18 18 18 18 20 19
petri-net-align18 (20) 4 4 8 9 0 4 1 2 10 11 0 0
scanalyzer-08 (30) 12 12 15 10 13 12 12 12 9 9 13 13
scanalyzer11 (20) 9 9 12 7 10 9 9 9 6 6 10 10
sokoban08 (30) 22 22 29 29 27 27 24 23 28 28 30 30
spider18 (20) 11 11 10 11 13 13 11 11 9 9 3 13
woodworking08 (30) 8 8 17 13 15 14 11 10 11 11 13 12
woodworking11 (20) 3 3 12 8 10 9 6 5 6 6 8 7
Sum other (187) 71 71 73 73 76 76 72 72 82 82 79 79
Sum (587) 271 271 315 319 301 302 303 294 316 317 300 316

Table 2: Per-domain coverage for the cost transformation methods.
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Figure 2: Number of heuristic evaluations per second (left) and expansions (right), comparing the both cost-transformation
configurations ct and wct with the LMcut heuristic.

Cost-Algebraic vs. Cost-Transformation
Theorem 3 guarantees that the search behavior of ca0 and
wct to be exactly the same, that is, they examine the same
nodes in the same order. However, the computational over-

head can still be different. For this reason, we also experi-
mentally compare these two configurations to each other.

We indeed can empirically verify that both methods al-
ways result in the exact same number of expansions. Figure
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Figure 3: Memory (left) and search time (right), comparing cost algebraic configuration ca0 to cost-transformation configura-
tion wct.

LMcut M&S CEGAR hmax iPDB
Coverage ca0 wct ca0 wct ca0 wct ca0 wct ca0 wct
Sum (587) 320 319 301 302 293 294 313 317 316 316

Table 3: Comparison ca0 and wct.

3 shows the memory consumption and the search time com-
parison between the two approaches for the LMcut heuris-
tic, with y-axis depicting performance relative to x-axis. We
see that the direct cost-algebraic implementation (ca0) con-
sistently suffers from the memory overhead for representing
the pairs for ordering the open list. Time performance varies
between ca0 taking approximately 0.6 and 1.84 as long as
wct. Still, Table 3, summarizing the overall coverage of these
two approaches, shows that the impact on the overall cov-
erage is low. Both approaches are very much on par, with
the only larger coverage difference occurring with the hmax
heuristic, on pegsol and woodworking domains.

Conclusions and Future Work
We considered the problem of finding a shortest cost-optimal
plan. We explored an algorithm from the literature based on
cost algebras and presented a new approach based on a cost
transformation. The cost transformation approach requires
a suitably chosen parameter M . Setting it to a trivial value
would lead to very high action costs in the transformed task,
potentially causing overflow problems in the planning sys-
tem. For this reason, we discussed several criteria for alter-
native lower values that still guarantee to find shortest cost-
optimal plans.

For the cost-transformation approach, we can either com-
pute a heuristic in the usual way (based on the cost function
of the task) or we can evaluate an admissible heuristic with

respect to the original cost function and scale it with factor
M . We have seen that this yields admissible heuristic esti-
mates for the transformed task. While the native estimates
give better guidance, their computation time can be signif-
icantly higher than with the scaled heuristic. In the exper-
iments we have seen that it depends on the domain which
approach performs better.

For the cost-algebraic approach, the experiments reveal
that it usually does not pay off to compute informed es-
timates for distances but that it is in general better to use
the blind distance heuristic instead. In the case of inte-
ger action costs and integer heuristic estimates for cost, we
can achieve the exact same search behaviour with the cost-
transformation approach (Theorem 3). Experimentally, the
cost-algebraic variant requires more memory but with no
significant impact on coverage.

As this work is the first that is explicitly covering the
shortest optimal planning problem, we believe that this is
the beginning of a long journey. One interesting avenue for
future work is understanding whether one of these methods
will excel on a given task and heuristic, without performing
any search. Another possible direction is an efficient heuris-
tic computation, either simultaneously computing heuristics
for both cost and distance or computing a heuristic for a
transformed cost task. Yet another important question is how
to determine the cost multiplier M without solving first the
cost-optimal variant. It would also be interesting to explore
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whether existing search pruning techniques (Pochter, Zo-
har, and Rosenschein 2011; Domshlak, Katz, and Shleyfman
2012; Alkhazraji et al. 2012) require any adaptation in order
to be applied to the cost algebra based A∗ in a shortest opti-
mal planning setting.
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