
ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Shohin Mukherjee, Sandip Aine, Maxim Likhachev
The Robotics Institute, CMU

{shohinm, asandip, mlikhach}@andrew.cmu.edu

Abstract

Parallel search algorithms harness the multithreading capa-
bility of modern processors to achieve faster planning. One
such algorithm is PA*SE (Parallel A* for Slow Expansions),
which parallelizes state expansions to achieve faster planning
in domains where state expansions are slow. In this work, we
propose ePA*SE (Edge-Based Parallel A* for Slow Evalua-
tions) that improves on PA*SE by parallelizing edge evalua-
tions instead of state expansions. This makes ePA*SE more
efficient in domains where edge evaluations are expensive
and need varying amounts of computational effort, which is
often the case in robotics. On the theoretical front, we show
that ePA*SE provides rigorous optimality guarantees. In ad-
dition, ePA*SE can be trivially extended to handle an infla-
tion weight on the heuristic resulting in a bounded subopti-
mal algorithm w-ePA*SE (Weighted ePA*SE) that trades off
optimality for faster planning. On the experimental front, we
validate the proposed algorithm in two different planning do-
mains: 1) motion planning for 3D humanoid navigation and
2) task and motion planning for a dual-arm robotic assembly
task. We show that ePA*SE can be significantly more efficient
than PA*SE and other alternatives. The open-source code for
ePA*SE along with the baselines is available here:
https://github.com/shohinm/parallel search

Introduction
Graph search algorithms such as A* and its variants (Hart,
Nilsson, and Raphael 1968; Pohl 1970; Aine et al. 2016) are
widely used in robotics for task and motion planning prob-
lems which can be formulated as a shortest path problem
on an embedded graph in the state-space of the domain. A*
maintains an open list (priority queue) of discovered states,
and at any point in the search, it expands the state with the
smallest priority (f-value) in the list. During the expansion,
it generates the successors of the state and evaluates the cost
of each edge connecting the expanded state to its successors.
In robotics applications such as in motion planning, edge
evaluation tends to be the bottleneck in the search. For ex-
ample, in planning for robot-manipulation, edge evaluation
typically corresponds to collision-checks of a robot model
against the world model at discrete interpolated states on
the edge. Depending on how these models are represented

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(meshes, spheres, etc.) and how finely the edges are sam-
pled for collision-checking, evaluating an edge can get very
expensive. As a consequence, the state expansions are typi-
cally slow.

In order to speed up planning in domains where state
expansions are slow, an optimal parallelized planning al-
gorithm PA*SE (Parallel A* for Slow Expansions) and its
(bounded) suboptimal version wPA*SE (Weighted PA*SE)
were developed (Phillips, Likhachev, and Koenig 2014). Un-
like other parallel search algorithms, in which the number
of times a state can be re-expanded increases with the de-
gree of parallelization (Irani and Shih 1986; Zhou and Zeng
2015; He et al. 2021), PA*SE expands states in a way that
each state is expanded at most once. The key idea in PA*SE
is that a state s can be expanded before another state s′ if
s is independent of s′ i.e. expansion of s′ cannot lead to a
shorter path to s. If the independence relationship holds in
both directions i.e. s′ is also independent of s, then s and
s′ can be expanded in parallel. Though PA*SE parallelizes
state expansions, for a given state, the successors are gen-
erated sequentially. This is not the most efficient strategy,
especially for domains with large branching factors. In addi-
tion, this strategy is particularly inefficient in domains where
there is a large variance in the edge evaluation times. Con-
sider a state being expanded with several outgoing edges,
such that the first edge is expensive to evaluate, while the
others are relatively inexpensive. In this case, since a single
thread is evaluating all of the edges in sequence, the evalua-
tions of the cheap edges will be held up by the one expensive
edge. This happens often in planning for robotics. Consider
full-body planning for a humanoid. Evaluating a primitive
that moves just the wrist joint of the robot requires collision
checking of just the wrist. However, evaluating the primitive
that moves the base of the robot, requires fully-body col-
lision checking of the entire robot. One way to avoid this
would be to evaluate the outgoing edges in parallel, which
PA*SE doesn’t do. However, this seemingly trivial modifi-
cation does not solve another cause of inefficiency in PA*SE
i.e. the evaluation of the outgoing edges from a given state
is tightly coupled with the expansion of the state. In other
words, all the outgoing edges from a given state must be
evaluated at the same time when the state is expanded. This
leads to more edges being evaluated than is necessary, as we
will show in our experiments.

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

136

Therefore in this work, we develop an improved optimal
parallel search algorithm, ePA*SE (Edge-Based Parallel A*
for Slow Evaluations), that eliminates these inefficiencies by
1) decoupling edge evaluation from state expansions and 2)
parallelizing edge evaluations instead of state expansions.
ePA*SE exploits the insight that the root cause of slow ex-
pansions is typically slow edge evaluations. Each ePA*SE
thread is responsible for evaluating a single edge, instead of
expanding a state and evaluating all outgoing edges from it,
all in a single thread, like in PA*SE. This makes ePA*SE
significantly more efficient than PA*SE and we show this
by evaluating it on two planning domains that are quite dif-
ferent: 1) 3D indoor navigation of a mobile manipulator and
2) a task and motion planning problem of stacking a set of
blocks by a dual-arm robot.

Related Work
Parallel planning algorithms seek to make planning faster by
leveraging parallel processing.

Parallel sampling-based algorithms There are a num-
ber of approaches that parallelize sampling-based planning
algorithms. Probabilistic roadmap (PRM) based methods,
in particular, can be trivially parallelized, so much so that
they have been described as “embarrassingly parallel” (Am-
ato and Dale 1999). In these approaches, several parallel
processes cooperatively build the roadmap in parallel (Ja-
cobs et al. 2012). Parallelized versions of RRT have also
been developed in which multiple cores expand the search
tree by sampling and adding multiple new states in paral-
lel (Devaurs, Siméon, and Cortés 2011; Ichnowski and Al-
terovitz 2012; Jacobs et al. 2013; Park, Pan, and Manocha
2016). However, in many planning domains involving plan-
ning with controllers (Butzke et al. 2014), sampling of states
is typically not possible. One such class of planning domains
where state sampling is not possible is simulator-in-the-loop
planning, which uses an expensive physics simulator to gen-
erate successors (Liang et al. 2021). We, therefore, focus on
the more general technique of search-based planning which
does not rely on state sampling.

Parallel search-based algorithms A trivial approach to
achieve parallelization in weighted A* is to generate suc-
cessors in parallel when expanding a state. The downside is
that this leads to minimal improvement in performance in
domains with a low branching factor. Another approach that
Parallel A* (Irani and Shih 1986) takes, is to expand states in
parallel while allowing re-expansions to account for the fact
that states may get expanded before they have the minimal
cost from the start state. This leads to a high number of state
expansions. There are a number of other approaches that em-
ploy different parallelization strategies (Evett et al. 1995;
Zhou and Zeng 2015; Burns et al. 2010), but all of them
could potentially expand an exponential number of states,
especially if they employ a weighted heuristic. In contrast,
PA*SE (Phillips, Likhachev, and Koenig 2014) parallelly ex-
pands states at most once, in such a way that does not affect
the bounds on the solution quality. Though PA*SE paral-
lelizes state expansions while preventing re-expansions, as
explained earlier, it is not efficient in domains where edge

evaluations are expensive since each PA*SE thread sequen-
tially evaluates the outgoing edges of a state being expanded.
A parallelized lazy planning algorithm, MPLP (Mukherjee,
Aine, and Likhachev 2022), achieves faster planning by run-
ning the search and evaluating edges asynchronously in par-
allel. Just like all lazy search algorithms, MPLP assumes
that successor states can be generated without evaluating
edges, which allows the algorithm to defer edge evaluations
and lazily proceed with the search. However, this assump-
tion doesn’t hold true for a number of planning domains in
robotics. In particular, consider planning problems that use
a high-fidelity physics simulator to evaluate actions involv-
ing object-object and object-robot interactions (Liang et al.
2021). The generation of successor states is typically not
possible without a very expensive simulator call. In such do-
mains, where edge evaluation cannot be deferred, MPLP is
not applicable. One of the domains in our experiments falls
in this class of problems.

GPU-based parallel algorithms There has also been
work on parallelizing A* search on a single GPU (Zhou
and Zeng 2015) or multiple GPUs (He et al. 2021) by utiliz-
ing multiple parallel priority queues. Since these approaches
must allow state re-expansions, the number of expansions
increases exponentially with the degree of parallelization. In
addition, GPU-based parallel algorithms have a more funda-
mental limitation which stems from the single-instruction-
multiple-data (SIMD) execution model of a GPU. This
means that a GPU can only run the same set of instruc-
tions on multiple data concurrently. This severely limits the
design of planning algorithms in several ways. Firstly, the
code for expanding a state must be identical, irrespective
of what state is being expanded. Secondly, the set of states
must be expanded in a batch. This is problematic in do-
mains that have complex actions that correspond to forward
simulating dissimilar controllers. In contrast to these ap-
proaches, ePA*SE achieves parallelization of edge evalua-
tions on the CPU which has a multiple-instruction-multiple-
data (MIMD) execution model. This allows ePA*SE the
flexibility to efficiently parallelize dissimilar edges, and
therefore generalize across all types of planning domains.

Problem Definition
Let a finite graph G = (V, E) be defined as a set of vertices
V and directed edges E . Each vertex v ∈ V represents a
state s in the state space of the domain S . An edge e ∈ E
connecting two vertices v1 and v2 in the graph represents
an action a ∈ A that takes the agent from corresponding
states s1 to s2. In this work, we assume that all actions are
deterministic. Hence an edge e can be represented as a pair
(s,a), where s is the state at which action a is executed.
For an edge e, we will refer to the corresponding state and
action as e.s and e.a respectively. In addition, we will use
the following notations:

• s0 is the start state and G is the goal region.
• c : E → [0,∞] is the cost associated with an edge.
• g(s) or g-value is the cost of the best path to s from s0

found by the algorithm so far.

137

• h(s) is a consistent and therefore admissible heuris-
tic (Russell 2010). It never overestimates the cost to the
goal.

A path π is defined by an ordered sequence of edges
eNi=1 = (s,a)Ni=1, the cost of which is denoted as c(π) =∑N

i=1 c(ei). The objective is to find a path π from s0 to a
state in the goal region G with the optimal cost c∗. There is a
computational budget of Nt threads available, which can run
in parallel. Similar to PA*SE, we assume there exists a pair-
wise heurisitic function h(s, s′) that provides an estimate of
the cost between any pair of states. It is forward-backward
consistent i.e. h(s, s′′) ≤ h(s, s′) + h(s′, s′′) ∀ s, s′, s′′ and
h(s, s′) ≤ c∗(s, s′) ∀ s, s′. Note that using h for both the
unary heuristic h(s) and the pairwise heuristic h(s, s′) is a
slight abuse of notation, since these are different functions.

Method
ePA*SE leverages the key algorithmic contribution of
PA*SE i.e. parallel expansions of independent states but in-
stead uses it to parallelize edge evaluations. In doing so,
ePA*SE further improves the efficiency of PA*SE in do-
mains with expensive to evaluate edges. ePA*SE obeys the
same invariant as A* and PA*SE that when a state is ex-
panded, its g-value is optimal. Therefore, every state is ex-
panded at most once. However, unlike in PA*SE, where each
thread is responsible for expanding a single state at a time,
each ePA*SE thread is responsible for evaluating a single
edge at a time. In order to build up to ePA*SE, we first de-
scribe a serial version of the proposed algorithm eA* (Edge-
based A*). We then explain how eA* can be parallelized to
get to ePA*SE, using the key idea behind PA*SE.

eA* The first key algorithmic difference in eA* as com-
pared to A* is that the open list OPEN contains edges in-
stead of states. We introduce the term expansion of an edge
and explicitly differentiate it from the expansion of a state.
In A*, during the expansion of a state, all its successors are
generated and, unless they have already been expanded, are
either inserted into the open list or repositioned with the up-
dated priority. In eA*, expansion of an edge (s,a) involves
evaluating the edge to generate the successor state s′ and
adding/updating (but not evaluating) the edges originating
from s′ into OPEN with the same priority of g(s′) + h(s′).
This choice of priority ensures that the edges originating
from states that would have the same (state-) expansion pri-
ority in A* have the same (edge-) expansion priority in eA*.
A state is defined as partially expanded if at least one (but
not all) of its outgoing edges has been expanded or is under
expansion, while it is defined as expanded if all its outgo-
ing edges have been expanded. eA* uses the following data
structures as the key ingredients of the algorithm.
• OPEN: A priority queue of edges (not states) that the

search has generated but not expanded, where the edge
with the smallest key/priority is placed in the front of the
queue. The priority of an edge e = (s,a) in OPEN is
f ((s,a)) = g(s) + h(s).

• BE: The set of states that are partially expanded.
• CLOSED: The set of states that have been expanded.

Naively storing edges instead of states in OPEN intro-
duces an inefficiency. In A*, the g-value of a state s can
change many times during the search until the state is ex-
panded at which point it is added to CLOSED. Every time
this happens, OPEN has to be rebalanced to reposition s.
In eA*, every time g(s) changes, the position of all of the
outgoing edges from s need to be updated in OPEN. This
increases the number of times OPEN has to be rebalanced,
which is an expensive operation. However, since the edges
originating from s have the same priority i.e. g(s) + h(s),
this can be avoided by replacing all the outgoing edges from
s by a single dummy edge ed = (s,ad), where ad stands for
a dummy action. The dummy edge stands as a placeholder
for all the real edges originating from s. Every time g(s)
changes, only the dummy edge has to be repositioned. Un-
like what happens when a real edge is expanded, when the
dummy edge (s,ad) is expanded, it is replaced by the out-
going real edges from s in OPEN. When a state’s dummy
edge is expanded or is under expansion, it is also considered
to be partially expanded and is therefore added to BE. When
all the outgoing real edges of a state have been expanded, it
is moved from BE to CLOSED. The g-value g(s) of a state s
in either BE or CLOSED can no longer change and hence the
real edges originating from s will never have to be updated
in OPEN.

eA* can be trivially extended to handle an inflation fac-
tor on the heuristic like wA* which leads to a more goal-
directed search w-eA* (Weighted eA*). Fig. 1 show an ex-
ample of w-eA* in action. Let eji refer to an edge from
state si to sj and edi refer to a dummy edge from si. The
states that are generated are shown in solid circles. The hol-
low circles represent states that are not generated and hence
the incoming edges to these states are not evaluated. During
the first expansion, the dummy edge ed0 originating from s0
is expanded and the real edges [e10, e

2
0, e

3
0] are inserted into

OPEN. In the second expansion, the edge e10 is expanded,
during which it is evaluated and the successor s1 is gener-
ated. A dummy edge (ed1) from s1 is inserted into OPEN.
In the third expansion, ed1 is expanded and the real edges
[e41, e

5
1] are inserted into OPEN. In the fourth expansion, the

edge e41 is expanded, during which it is evaluated and the
successor s4 is generated and a dummy edge ed4 is inserted
into open. This goes on until a dummy edge edn is expanded
whose source state belongs to the goal region i.e. sn ∈ G.

If the heuristic is informative, w-eA* evaluates fewer
edges than wA*. In the example shown in Fig. 1, the edges
[e20, e

3
0, e

5
1] do not get evaluated. Since wA* evaluates all out-

going edges of an expanded state, these edges would be eval-
uated in the case of wA* (with the same heuristic and infla-
tion factor) when their source states are expanded (s0 and
s1). Additionally, similar to how wPA*SE parallelizes wA*,
w-eA* can be parallelized to obtain a highly efficient algo-
rithm w-ePA*SE. Since w-ePA*SE is a trivial extension of
ePA*SE, we instead describe how eA* can be parallelized
to obtain ePA*SE.

eA* to ePA*SE eA* can be parallelized using the key idea
behind PA*SE i.e. parallel expansion of independent states,
and applying it to edge expansions, resulting in ePA*SE.

138

s0

s1

s3

s2s0
e0

d

e0
1

e0
2

e0
3

e0
1 e0

2 e0
3

s1

s3

s2s0

e1
d

e0
2

e0
3

e0
1 s1

s3

s2s0

e1
d

e0
2

e0
3

e0
2 e0

3

e0
1

e0
2 e0

3e1
d

s1

s3

s2s0

e0
2

e0
3

e0
2 e0

3

e0
1

s5

s4
e1

4

e1
5

e1
4 e1

5

s1

s3

s2s0

e0
2

e0
3

e0
2 e0

3

e0
1

s5

s4

e1
4

e1
5

e1
5

e4
d

e4
d

1 2 3 4

s1

s3

s2s0

e0
2

e0
3

e0
1

s5

s4

e1
4

e1
5

e4
d

en
d

Goal region

Goal Reached

sn

Figure 1: Example of eA*: (1) The dummy edge ed0 originating from s0 is expanded and the real edges [e10, e
2
0, e

3
0] are inserted

into OPEN. (2) e10 is expanded, during which it is evaluated and the successor s1 is generated. A dummy edge ed1 from s1 is
inserted into OPEN. (3) ed1 is expanded and the real edges [e41, e

5
1] are inserted into OPEN. (4) e41 is expanded, during which it

is evaluated and the successor s4 is generated and a dummy edge ed4 is inserted into open. This goes on until a dummy edge edn
is expanded whose source state belongs to the goal region i.e. sn ∈ G.

ePA*SE has two key differences from PA*SE that makes
it more efficient:
1. Evaluation of edges is decoupled from the expansion of

the source state giving the search the flexibility to figure
out what edges need to be evaluated.

2. Evaluation of edges is parallelized.
In addition to OPEN and CLOSED, PA*SE uses another

data structure BE (Being Expanded) to store the set of states
currently being expanded by one of the threads. It uses a
pairwise independence check on states in the open list to
find states that are safe to expand in parallel. A state s is safe
to expand if g(s) is already optimal. In other words, there is
no other state that is currently being expanded (in BE), nor
in OPEN that can reduce g(s). Formally, a state s is defined
to be independent of state s’ iff

g(s)− g(s′) ≤ h(s′, s) (1)
It can be proved that s is independent of states in OPEN

that have a larger priority than s (Phillips, Likhachev, and
Koenig 2014). However, the independence check has to be
performed against the states in OPEN with a smaller priority
than s as well as the states that are in BE.

Like in eA*, BE in ePA*SE stores the states that are par-
tially expanded, as per the definition of partial expansion in
eA*. Since ePA*SE stores edges in OPEN instead of states
and each ePA*SE thread expands edges instead of states, the
independence check has to be modified. An edge e is safe to
expand if Equations 2 and 3 hold.

g(e.s)− g(e′.s) ≤ h(e′.s, e.s)

∀e′ ∈ OPEN | f (e′) < f (e)
(2)

g(e.s)− g(s′) ≤ h(s′, e.s) ∀s′ ∈ BE (3)
Equation 2 ensures that there is no edge in OPEN with

a priority smaller than that of e, that upon expansion, can
lower the g-value of e.s and hence lower the priority of e. In
other words, the source state s of edge e is independent of
the source states of all edges in OPEN which have a smaller
priority than e. Equation 3 ensures that there is no partially
expanded state which can lower the g-value of e.s. In other
words, the source state s of edge e is independent of all states
in BE.

Details The pseudocode for ePA*SE is presented in
Alg. 1. The main planning loop in PLAN runs on a single
thread (thread 0), and in Line 13, an edge is removed for ex-
pansion from OPEN that has the smallest possible priority
and is also safe to expand, as per Equations 2 and 3. If such
an edge is not found, the thread waits for either OPEN or
BE to change in Line 16. If a safe to expand edge is found,
such that the source state of the edge belongs to the goal
region, the solution path is returned by backtracking from
the state to the start state using back pointers (like in A*)
in Line 22. Otherwise, the edge is expanded assigned to an
edge expansion thread (thread i = 1 : Nt) in Line 30. The
edge expansion threads are spawned as and when needed to
avoid the overhead of running unused threads (Line 29). The
search terminates when either a solution is found, or when
OPEN is empty and all threads are idle (BE is empty), in
which case there is no solution.

If the edge to be expanded is a dummy edge, the source
s of the edge is marked as partially expanded by adding
it to BE (Line 41). The real edges originating from s are
added to OPEN with the same priority as that of the dummy
edge i.e. g(s) + h(s). If the expanded edge is not a dummy
edge, it is evaluated (Line 47) to obtain the successor s′ and
the edge cost c ((s,a)). This is the expensive operation that
ePA*SE seeks to parallelize, which is why it happens lock-
free. If the expanded edge reduces g(s′), the dummy edge
originating from s′ is added/updated in OPEN. A counter
n successors generated keeps track of the number of out-
going edges that have been expanded for every state. Once
all the outgoing edges for a state have been expanded, and
hence the state has been expanded, it is removed from BE
and added to CLOSED (Lines 57 and 58).

Thread management In PA*SE, the state expansion
threads are spawned at the start and each of them indepen-
dently pulls out states from the open list to expand. When
the number of threads is higher than the number of indepen-
dent states available for expansion at any point in time, the
operating system has an unnecessary overhead of spinning
unused threads. This causes the overall performance to go
down as the number of unused threads goes up (see Fig. 6
in (Phillips, Likhachev, and Koenig 2014)). Our initial ex-
periments showed that using a similar thread management
strategy in ePA*SE leads to a similar degradation in perfor-

139

Algorithm 1: ePA*SE

1: A ← action space , Nt ← number of threads, G← ∅
2: s0 ← start state , G ← goal region, terminate← False
3: procedure PLAN
4: ∀s ∈ G, s.g ←∞, n successors generated(s) = 0
5: s0.g ← 0
6: insert (s0,ad) in OPEN ▷ Dummy edge from s0
7: LOCK
8: while not terminate do
9: if OPEN = ∅ and BE = ∅ then

10: terminate = True
11: UNLOCK
12: return ∅
13: remove an edge (s,a) from OPEN that has the

smallest f((s,a)) among all states in OPEN that
satisfy Equations 2 and 3

14: if such an edge does not exist then
15: UNLOCK
16: wait until OPEN or BE change
17: LOCK
18: continue
19: if s ∈ G then
20: terminate = True
21: UNLOCK
22: return BACKTRACK(s)
23: else
24: UNLOCK
25: while (s,a) has not been assigned a thread do
26: for i = 1 : Nt do
27: if thread i is available then
28: if thread i has not been spawned then
29: Spawn EDGEEXPANDTHREAD(i)

30: Assign (s,a) to thread i

31: LOCK
32: terminate = True
33: UNLOCK
34: procedure EDGEEXPANDTHREAD(i)
35: while not terminate do
36: if thread i has been assigned an edge (s,a) then
37: EXPAND ((s,a))

38: procedure EXPAND((s,a))
39: LOCK
40: if a = ad then
41: insert s in BE
42: for a ∈ A do
43: f ((s,a)) = g(s) + h(s)
44: insert (s,a) in OPEN with f ((s,a))

45: else
46: UNLOCK
47: s′, c ((s,a))← GENERATESUCCESSOR ((s,a))
48: LOCK
49: if s′ /∈ CLOSED ∪ BE and
50: g(s′) > g(s) + c ((s,a)) then
51: g(s′) = g(s) + c ((s,a))
52: s′.parent = s
53: f

(
(s′,ad)

)
= g(s′) + h(s′)

54: insert/update (s′,ad) in OPEN with f
(
(s′,ad)

)
55: n successors generated(s)+ = 1
56: if n successors generated(s) = |A| then
57: remove s from BE
58: insert s in CLOSED
59: UNLOCK

mance as the number of threads is increased beyond the op-
timal number of threads, even though the peak performance
of ePA*SE is substantially higher than that of PA*SE. In
order to prevent this degradation in performance, ePA*SE
employs a different thread management strategy. There is a
single thread that pulls out edges from the open list and it
spawns edge expansion threads as needed but capped at Nt

(Line 29). When Nt is higher than the number of indepen-
dent edges available for expansion at any point in time, only
a subset of available threads get spawned preventing perfor-
mance degradation, as we will show in our experiments.

w-ePA*SE w-ePA*SE is a bounded suboptimal variant of
ePA*SE that trades off optimality for faster planning. Simi-
lar to wPA*SE, w-ePA*SE introduces two inflation factors,
the first of which, ϵ ≥ 1, relaxes the independence rule
(Equations 2 and 3) as follows.

g(e.s)− g(e′.s) ≤ ϵh(e′.s, e.s)

∀e′ ∈ OPEN | f (e′) < f (e)
(4)

g(e.s)− g(s′) ≤ ϵh(s′, e.s) ∀s′ ∈ BE (5)

The second factor w ≥ 1 is used to inflate the heuris-
tic in the priority of edges in OPEN i.e. f ((s,a)) =
g(s) + w · h(s) which makes the search more goal di-
rected. As long as ϵ ≥ w, the solution cost is bounded by
ϵ · c∗ (Theorem 3). Note that w can be greater than ϵ, but
then Equation 4 has to consider source states of all edges in
OPEN and the solution cost will be bounded by w · c∗ (The-
orem 1). Since this leads to significantly more independence
checks, the ϵ ≥ w relationship is typically recommended in
practice.

Properties
w-ePA*SE has identical properties to that of
wPA*SE (Phillips, Likhachev, and Koenig 2014) and
can be proved similarly with minor modifications.

Theorem 1 (Bounded suboptimal expansions) When
w-ePA*SE that performs independence checks against
all states in BE and source states of all edges in OPEN,
chooses an edge e for expansion, then g(e.s) ≤ λg∗(s),
where λ = max(ϵ, w).

Proof Assume, for the sake of contradiction, that g(e.s) >
λg∗(e.s) directly before edge e is expanded, and without
loss of generality, that g(e′.s) ≤ λg∗(e′.s) for all edges
e′ selected for expansion before e (Assumption). Consider
any cost-minimal path π(s0, s) from s0 to s. Let sm be the
closest state to s0 on π(s0, s) such that either 1) there ex-
ists atleast one edge in OPEN with source state sm or 2) sm
is in BE. sm is no farther away from s0 on π(s0, s) than s
since s is in OPEN. Therefore, let π(s0, sm) and π(sm, s)
be the subpaths of π(s0, s) from s0 to sm and from sm to s,
respectively.

If sm = s0, then g(sm) ≤ λg∗(sm) since g(s0) =
g∗(s0) = 0 (Contradiction 111).

Otherwise, let sp be the predecessor of sm on π(s0, s). sp
has been expanded (i.e. all edges outgoing edges of sp have

140

been expanded) since every state closer to s0 on π(s0, s)
that sm has been expanded (since every unexpanded state
on π(s0, s) different from s0 is either in BE or has an outgo-
ing edge in OPEN, or has a state closer to s0 on π(s0, s) that
is either in BE or has an outgoing edge in OPEN). There-
fore, since all outgoing edges from sp have been expanded,
g(sp) ≤ λg∗(sp) because of Assumption. Then, because of
the g update of sm when the edge from sp to sm was ex-
panded,

g(sm) ≤ g(sp) + c(sp, sm)

≤ λg∗(sp) + c(sp, sm) (6)

Since sp is the predecessor of sm on the cost-minimal path
π(s0, s),

g∗(sm) = g∗(sp) + c(sp, sm)

=⇒ g∗(sp) = g∗(sm)− c(sp, sm) (7)

Substituting g∗(sp) from Equation 7 into Equation 6

=⇒ g(sm) ≤ λg∗(sm)− (λ− 1)c(sp, sm)

=⇒ g(sm) ≤ λg∗(sm)

=⇒ λc(π(s0, sm)) = λg∗(sm) ≥ g(sm) (8)

Since h(sm, s) satisfies forward-backward consistency
and is therefore admissible, h(sm, s) ≤ c(π(sm, s)). Since,
λ = max(ϵ, w), ϵ ≤ λ. Therefore,

λc(π(sm, s)) ≥ λh(sm, s) ≥ ϵh(sm, s) (9)

Adding 8 and 9,

λc(s0, s) = λc(s0, sm) + λc(sm, s)

≥ g(sm) + ϵh(sm, s) (10)

Assuming w-ePA*SE performs independence checks
against states in BE and source states of all edges in OPEN
when choosing an edge e with source e.s to expand, and sm
is either in BE or there exists atleast one edge with source
sm in OPEN,

ϵh(e′.s, e.s) ≥ g(e.s)− g(e′.s)

∀e′ ∈ OPEN | e′.s = sm
=⇒ g(sm) + ϵh(sm, s) ≥ g(s) (11)

Therefore,

λg∗(s) =λc(π(s0, s))

≥g(sm) + ϵh(sm, s) (Using Eq. 10)
≥g(s) (Using Eq. 11)

(Contradiction 222)

Contradiction 1 and Contradiction 2 invalidate the As-
sumption, which proves Theorem 1.

Theorem 2 If w ≤ ϵ, and considering any two edges e and
e’ in OPEN, the source state of e is independent of the source
state of e’ if f(e) ≤ f(e′).

Proof

f(e) ≤ f(e′)

=⇒ g(e.s) + wh(e.s) ≤ g(e′.s) + wh(e′.s)

=⇒ g(e.s) ≤ g(e′.s) + w(h(e′.s)− h(e.s))

≤ g(e′.s) + wh(e′.s, e.s)

(forward-backward consistency)

≤ g(e′.s) + ϵh(e′.s, e.s)

(since w ≤ ϵ)

Therefore, e.s is independent of e′.s by definition (Eq. 1).

Theorem 3 (Bounded suboptimality) If w ≤ ϵ, and
w-ePA*SE chooses a dummy edge ed = (s,ad) for expan-
sion, such that the source state s belongs to the goal region
i.e. s ∈ G, then g(s) ≤ ϵg∗(s) = ϵ · c∗.

Proof This directly follows from Theorems 1 and 2.

Theorem 4 (Completeness) If there exists at least one path
π in G from s0 to G, w-ePA*SE will find it.

Proof This proof makes use of Theorem 3 and is similar to
the equivalent proof of serial wA*.

Evaluation
We evaluate w-ePA*SE in two planning domains where
edge evaluation is expensive. All experiments were carried
out on Amazon Web Services (AWS) instances. All algo-
rithms were implemented in C++.

3D Navigation
The first domain is motion planning for 3D (x, y, θ) navi-
gation of a PR2, which is a human-scale dual-arm mobile
manipulator robot, in an indoor environment similar to the
one used in (Narayanan and Likhachev 2017) and shown
in Fig. 2. Here x, y are the planar coordinates and θ is the
orientation of the robot. The robot can move along 18 sim-
ple motion primitives that independently change the three
state coordinates by incremental amounts. Evaluating each
primitive involves collision checking of the robot model
(approximated as spheres) against the world model (repre-
sented as a 3D voxel grid) at interpolated states on the prim-
itive. Though approximating the robot with spheres instead
of meshes speeds up collision checking, it is still the most
expensive component of the search. The computational cost
of edge evaluation increases with an increasing granularity
of interpolated states at which collision checking is carried
out. For our experiments, collision checking is carried out
at interpolated states 1 cm apart. The search uses Euclidean
distance as the admissible heuristic. We evaluate on 50 trials
in each of which the start configuration of the robot and goal
region are sampled randomly. We compare w-ePA*SE with
other CPU-based parallel search baselines. The first base-
line is a variant of weighted A* in which during a state ex-
pansion, the successors of the state are generated and the
corresponding edges are evaluated in parallel. For lack of
a better term, we call this baseline Parallel Weighted A*
(PwA*). Note that this is very different from the Parallel A*
(PA*) algorithm (Irani and Shih 1986) which has already

141

Figure 2: (Navigation) Left: The PR2’s collision model is
approximated with spheres. Right: The task is to navigate in
an indoor map from a given start (purple) and goal (green)
states using a set of motion primitives. States at the end of
every primitive in the generated plan are shown in black.

Figure 3: (Navigation) Top: Average speedup achieved by
PwA*, wPA*SE and w-ePA*SE over wA*. Bottom: Num-
ber of edges evaluated by wPA*SE and w-ePA*SE.

been shown to underperform wPA*SE (Phillips, Likhachev,
and Koenig 2014). The second baseline is wPA*SE. These
two baselines leverage parallelization differently. PwA* par-
allelizes the generation of successors, whereas wPA*SE par-
allelizes state expansions. w-ePA*SE on the other hand par-
allelizes edge evaluations. We also compare against a vari-
ation of w-ePA*SE (w-ePA*SE w/o thread mgt.) that uses
the thread management strategy of wPA*SE as opposed to
the improved thread management strategy described in the
Method. Speedup over wA* is defined as the ratio of the av-
erage runtime of wA* over the average runtime of a specific
algorithm.

Fig. 3 (top) shows the average speedup achieved by
wPA*SE and the baselines over wA* for varying Nt, for
w = ϵ = 1 and w = ϵ = 50. The corresponding raw
planning times are shown in Table 1. The speedup achieved
by PwA* saturates at the branching factor of the domain.

This is expected since PwA* parallelizes the evaluation of
the outgoing edges of a state being expanded. If Nt is
greater than the branching factor M , Nt−M threads remain
unutilized. For low Nt, the speedup achieved by w-ePA*SE
matches that of wPA*SE. However, for high Nt, the speedup
achieved by w-ePA*SE rapidly outpaces that of w-ePA*SE,
especially for the inflated heuristic case. This is because
w-ePA*SE is much more efficient than wPA*SE since it par-
allelizes edge evaluations instead of state expansions. This
increased efficiency is more apparent with the availability of
a larger computational budget in the form of a greater num-
ber of threads to allocate to evaluating edges. The speedup of
wPA*SE reaches a peak and then rapidly deteriorates. This
is also the case for w-ePA*SE w/o (improved) thread mgt.
(described in the Method), even though the peak speedup of
w-ePA*SE w/o thread mgt.is higher than that of wPA*SE.
However, the speedup of w-ePA*SE with the improved
thread management strategy reaches a maximum and then
saturates instead of degrading. This is due to the difference
in the multithreading strategy employed by w-ePA*SE as
explained in the Method.

Fig. 3 (bottom) and Table 2 show that w-ePA*SE eval-
uates significantly fewer edges as compared to wPA*SE.
With a greater number of threads, the difference is sig-
nificant. This indicates that beyond parallelization of edge
evaluations, the w-eA* formulation that w-ePA*SE uses
has another advantage that if the heuristic is informative,
w-ePA*SE evaluates fewer edges than wPA*SE, which con-
tributes to the lower planning time of w-ePA*SE. The intu-
ition behind this is that in wA*, the evaluation of the out-
going edges from a given state is tightly coupled with the
expansion of the state because all the outgoing edges from
a given state must be evaluated at the same time when the
state is expanded. In w-eA* the evaluation of these edges is
decoupled from each other since the search expands edges
instead of states.

Assembly Task

Pick/SwitchArm

Motion planner Motion planner Simulator

Place

Figure 4: (Assembly) Top: The PR2 has to arrange a set of
blocks on the table (left) into a given configuration (right).
Bottom: It is equipped with PICK, PLACE and SWITCHARM
controllers.

142

Nt 1 4 5 10 15 20 30 40 50 70 90

wA* 3.33 - - - - - - - - - -

w = ϵ = 1
PwA* 3.37 1.31 1.06 0.71 0.65 0.66 0.66 0.64 0.64 0.65 0.65

wPA*SE 3.37 1.14 0.85 0.39 0.26 0.22 0.24 0.37 0.53 0.85 1.22
w-ePA*SE w/o thread mgt. 3.43 1.17 0.88 0.39 0.26 0.20 0.18 0.22 0.24 0.27 0.30

w-ePA*SE 3.34 1.17 0.87 0.40 0.27 0.21 0.18 0.18 0.18 0.18 0.18

wA* 0.71 - - - - - - - - - -

w = ϵ = 50
PwA* 0.72 0.29 0.24 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15

wPA*SE 0.71 0.28 0.22 0.13 0.11 0.11 0.10 0.12 0.15 0.24 0.33
w-ePA*SE w/o thread mgt. 0.75 0.25 0.19 0.09 0.06 0.06 0.06 0.07 0.08 0.09 0.11

w-ePA*SE 0.72 0.25 0.19 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.06

Table 1: (Navigation) Average planning times (s) for wA*, PwA*, wPA*SE and w-ePA*SE for varying Nt, with w = ϵ = 1
(top) and with w = ϵ = 50 (bottom).

Nt 1 4 5 10 15 20 30 40 50 70 90

wPA*SE 5674 5673 5676 5746 5885 6112 6826 7607 7980 8125 8156
w = ϵ = 1w-ePA*SE 5660 5650 5649 5645 5640 5637 5634 5633 5633 5634 5633

wPA*SE 1309 1451 1526 2028 2561 3121 4251 5307 6105 7231 7526
w = ϵ = 50w-ePA*SE 1324 1273 1277 1300 1301 1333 1343 1345 1334 1348 1343

Table 2: (Navigation) Number of edges evaluated by wPA*SE and w-ePA*SE for varying Nt, with w = ϵ = 1 (top) and with
w = ϵ = 50 (bottom).

wA* PwA* wPA*SE w-ePA*SE

Nt 1 25 10 10

Time (s) 3010 1066 419 301
Speedup 1 2.8 7.2 10

Table 3: (Assembly) Average planning times and speedup
over wA* for w-ePA*SE and the baselines.

The second domain is a task and motion planning problem
of assembling a set of blocks on a table into a given struc-
ture by a PR2, as shown in Fig. 4. This domain is similar
to the one introduced in (Mukherjee, Aine, and Likhachev
2022), but in this work, we enable the dual-arm functional-
ity of the PR2. We assume full state observability of the 6D
poses of the blocks and the robot’s joint configuration. The
goal is defined by the 6D poses of each block in the desired
structure. The PR2 is equipped with PICK and PLACE con-
trollers which are used as macro-actions in the high-level
planning. In addition, there is a SWITCHARM controller
which switches the active arm by moving the current active
arm to a home position. All of these actions use a motion
planner internally to compute collision-free trajectories in
the workspace. Additionally, PLACE has access to a simu-
lator (NVIDIA Isaac Gym (Makoviychuk et al. 2021)) to
simulate the outcome of placing a block at its desired pose.
For example, if the planner tries to place a block at its final
pose but has not placed the block underneath yet, the placed
block will not be supported and the structure will not be sta-
ble. This would lead to an invalid successor during planning.
We set a simulation timeout of ts = 0.2 s to evaluate the out-
come of placing a block. Considering the variability in the

simulation speed and the overhead of communicating with
the simulator, this results in a total wall time of less than
2 s for the simulation. The motion planner has a timeout
of tp = 60 s based on the wall time, and therefore that is
the maximum time the motion planning can take. Success-
ful PICK, PLACE and SWITCHARM actions have unit costs,
and infinite otherwise. A PICK action on a block is success-
ful if the motion planner finds a feasible trajectory to reach
the block within tp. A PLACE action on a block is success-
ful if the motion planner finds a feasible trajectory to place
the block within tp and simulating the block placement re-
sults in the block coming to rest at the desired pose within
ts. A SWITCHARM action is successful if the motion plan-
ner finds a feasible trajectory to the home position for the
active arm within tp. The number of blocks that are not in
their final desired pose is used as the admissible heuristic,
with w = ϵ = 5. Table 3 shows planning times and speedup
over wA* for w-ePA*SE and those of the baselines. We use
25 threads in the case of PwA* because that is the maxi-
mum branching factor in this domain. The numbers are av-
eraged across 20 trials in each of which the blocks are ar-
ranged in random order on the table. Table 3 shows the aver-
age planning times and speedup over wA* of w-ePA*SE as
compared to those of the lazy search baselines. w-ePA*SE
achieves a 10x speedup over wA* and outperforms the base-
lines in this domain as well.

Conclusion and Future Work
We presented an optimal parallel search algorithm ePA*SE,
that improves on PA*SE by parallelizing edge evalua-
tions instead of state expansions. We also presented a sub-
optimal variant w-ePA*SE and proved that it maintains

143

bounded suboptimality guarantees. Our experiments showed
that w-ePA*SE achieves an impressive reduction in plan-
ning time across two very different planning domains, which
shows the generalizability of our conclusions. Empirically,
we have observed w-ePA*SE to be a strict improvement
over wPA*SE for domains with expensive to compute edges.
Even though we also test with a relatively large budget of
threads, the performance improvement is significant even
with a smaller budget of fewer than 10 threads, which is
the case with typical mobile computers. Therefore in prac-
tice, we recommend using w-ePA*SE in a planning domain
where 1) the computational bottleneck is edge evaluations
and 2) successor states cannot be generated without eval-
uating edges and therefore parallelized lazy planning i.e.
MPLP (Mukherjee, Aine, and Likhachev 2022) is not ap-
plicable.

MPLP (Mukherjee, Aine, and Likhachev 2022) and
ePA*SE use fundamentally different parallelization strate-
gies. MPLP searches the graph lazily while evaluating edges
in parallel, but relies on the assumption that states can
be generated lazily without evaluating edges. On the other
hand, ePA*SE evaluates edges in a way that preserves opti-
mality without the need for state (and edge) re-expansions
but does not rely on lazy state generation. In domains where
states can be generated lazily, however, the lazy state gener-
ation takes a non-trivial amount of time, these two different
parallelization strategies can be combined. Both MPLP and
ePA*SE achieve a speedup at a certain number of threads,
beyond which the speedup saturates. Therefore, utilizing
both of them together will allow us to leverage more threads,
which either of them on their own cannot.

Acknowledgements
This work was supported by the ARL-sponsored A2I2
program, contract W911NF-18-2-0218, and ONR grant
N00014-18-1-2775.

References
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2016. Multi-heuristic A*. The International
Journal of Robotics Research, 35(1-3): 224–243.
Amato, N. M.; and Dale, L. K. 1999. Probabilistic roadmap
methods are embarrassingly parallel. In Proceedings 1999
IEEE International Conference on Robotics and Automa-
tion, volume 1, 688–694.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
first heuristic search for multicore machines. Journal of Ar-
tificial Intelligence Research, 39: 689–743.
Butzke, J.; Sapkota, K.; Prasad, K.; MacAllister, B.; and
Likhachev, M. 2014. State lattice with controllers: Aug-
menting lattice-based path planning with controller-based
motion primitives. In 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 258–265.
Devaurs, D.; Siméon, T.; and Cortés, J. 2011. Parallelizing
RRT on distributed-memory architectures. In 2011 IEEE In-
ternational Conference on Robotics and Automation, 2261–
2266.

Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995.
PRA*: Massively parallel heuristic search. Journal of Par-
allel and Distributed Computing, 25(2): 133–143.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
He, X.; Yao, Y.; Chen, Z.; Sun, J.; and Chen, H. 2021. Effi-
cient parallel A* search on multi-GPU system. Future Gen-
eration Computer Systems, 123: 35–47.
Ichnowski, J.; and Alterovitz, R. 2012. Parallel sampling-
based motion planning with superlinear speedup. In IROS,
1206–1212.
Irani, K.; and Shih, Y.-f. 1986. Parallel A* and AO*
algorithms- An optimality criterion and performance eval-
uation. In 1986 International Conference on Parallel Pro-
cessing, University Park, PA, 274–277.
Jacobs, S. A.; Manavi, K.; Burgos, J.; Denny, J.; Thomas,
S.; and Amato, N. M. 2012. A scalable method for par-
allelizing sampling-based motion planning algorithms. In
2012 IEEE International Conference on Robotics and Au-
tomation, 2529–2536.
Jacobs, S. A.; Stradford, N.; Rodriguez, C.; Thomas, S.; and
Amato, N. M. 2013. A scalable distributed RRT for mo-
tion planning. In 2013 IEEE International Conference on
Robotics and Automation, 5088–5095.
Liang, J.; Sharma, M.; LaGrassa, A.; Vats, S.; Saxena, S.;
and Kroemer, O. 2021. Search-Based Task Planning with
Learned Skill Effect Models for Lifelong Robotic Manipu-
lation. arXiv preprint arXiv:2109.08771.
Makoviychuk, V.; Wawrzyniak, L.; Guo, Y.; Lu, M.; Storey,
K.; Macklin, M.; Hoeller, D.; Rudin, N.; Allshire, A.;
Handa, A.; et al. 2021. Isaac Gym: High Performance
GPU-Based Physics Simulation For Robot Learning. arXiv
preprint arXiv:2108.10470.
Mukherjee, S.; Aine, S.; and Likhachev, M. 2022. MPLP:
Massively Parallelized Lazy Planning. IEEE Robotics and
Automation Letters, 7(3): 6067–6074.
Narayanan, V.; and Likhachev, M. 2017. Heuristic search
on graphs with existence priors for expensive-to-evaluate
edges. In Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling.
Park, C.; Pan, J.; and Manocha, D. 2016. Parallel motion
planning using poisson-disk sampling. IEEE Transactions
on Robotics, 33(2): 359–371.
Phillips, M.; Likhachev, M.; and Koenig, S. 2014. PA* SE:
Parallel A* for slow expansions. In Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Russell, S. J. 2010. Artificial intelligence a modern ap-
proach. Pearson Education, Inc.
Zhou, Y.; and Zeng, J. 2015. Massively parallel A* search on
a GPU. In Proceedings of the AAAI Conference on Artificial
Intelligence.

144

