
Local Motif Clustering via (Hyper)Graph Partitioning

Adil Chhabra1, Marcelo Fonseca Faraj2, Christian Schulz3

Heidelberg University, Germany
1adil.chhabra@stud.uni-heidelberg.de 2marcelofaraj@informatik.uni-heidelberg.de

3christian.schulz@informatik.uni-heidelberg.de

Abstract

Local clustering consists of finding a good cluster around a
seed node in a graph. Recently local motif clustering has been
proposed: it is a local clustering approach based on motifs
rather than edges. Since this approach is recent, most algo-
rithms to solve it are extensions of statistical and numerical
methods previously used for local clustering, while combi-
natorial approaches are still few and simple. In this work,
we build a (hyper)graph to represent the motif-distribution
around the seed node. We solve this model using sophisti-
cated (hyper)graph partitioners. On average, our algorithm
computes clusters six times faster and three times better than
the state-of-the-art for the triangle motif.

Introduction
Given a graph and a seed node, the local clustering problem
consists of identifying a well-characterized cluster which
contains the seed node. The quality of a cluster can be
measured by its conductance (Kannan, Vempala, and Vetta
2004), which is NP-hard (Wagner and Wagner 1993) to op-
timize. Ideally memory and space complexity of local clus-
tering heuristics dependent on cluster size rather than graph
size. In traditional clustering, a cluster is evaluated by its
edge distribution. A promising novel approach named local
motif clustering evaluates clusters based on motif distribu-
tion. Since this approach is recent, most algorithms for it
are either extensions of statistical and numerical methods
previously proposed for local clustering or simple combina-
torial methods (Yin et al. 2017; Zhang et al. 2019; Meng
et al. 2019; Murali, Potika, and Pollett 2020). We propose
a combinatorial algorithm to solve the local motif clustering
problem based on sophisticated (hyper)graph partitioning al-
gorithms. On average, our algorithm computes clusters six
times faster and three times better than the state-of-the-art.

Related Work
Rohe and Qin (2013) grow a cluster initialized with the seed
node by adding nodes from cut triangles. Zhang et al. (2019)
obtain a cluster using a simplified spectral approach based
on approximate local motif spectra computed via random
walk. Meng et al. (2019) compute a cluster by optimizing a
fuzzy adaptation of the modularity metric. Zhou et al. (2021)

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

assigned to local cluster

not assigned to local cluster

(hyper)edges contained in S

(hyper)edges between S and S

motifs contained in S

motifs in S and S

V

u
(a)

u S S
(b)

u

(c)

u t
(d)

u t
(e)

u

Figure 1: (a) Get ball S. (b) Enumerate motifs. (c) BuildHµ.
(d) Partition Hµ. (e) Convert partition to cluster around u.

find a cluster by approximating the motif distribution vec-
tor via random walk and applying vector-based partition-
ing (Spielman and Teng 2013). Shang et al. (2022) grow a
cluster initialized with the seed node by adding neighbors
based on motif degree to optimize for motif-based mod-
ularity. Yin et al. (2017) propose MAPPR, an algorithm
based on PageRank which optimizes for motif conductance
(φµ) (Benson, Gleich, and Leskovec 2016).

Local Motif Graph Clustering
Overall Strategy. For a graph G, a seed node u ∈ V (G),
and a motif µ, our algorithm has 4 phases. First, select a set
S ⊆ V containing u and close-by nodes (a ball around u).
Second, enumerate the setM of occurrences of µ containing
nodes in S. Third, build a (hyper)graph model Hµ such that
the motif conductance in G is computable from Hµ. Fourth,
partition Hµ using a high-quality (hyper)graph partitioner
such that the obtained partition directly converts back to G
as a cluster around u. Fig. 1 shows the four phases of our
algorithm. We pick the best motif conductance out of α rep-
etitions of the overall strategy with different balls around u
and β repetitions of the partitioning phase with random im-
balance constraints (Alg. 1). For the graph-based version of
Hµ, we run a special label propagation on each obtained par-
tition to try to reach a local minimum motif conductance.
Ball around Seed Node, Motif Enumeration. We se-
lect S via a fixed-depth breadth-first search (BFS) rooted
on u, i.e., by computing ` layers of this BFS and includ-
ing touched nodes in S. For α repetitions of this phase, we
use different amounts ` of layers for a better exploration.
This is done in time linear on the subgraph induced by S

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

261

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

%
 i

n
st

a
n

c
e
s
£

 t
 b

e
st

 f
m

t

MAPPR
GL;3;80

(a) Motif conductance perf. profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

%
 i

n
st

a
n

c
e
s
£

 t
 f

a
st

e
st

t

MAPPR
GL;3;80

(b) Running time perf. profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
o
ti

f
C

o
n
d
u
c
ta

n
c
e

Cluster Size

MAPPR
GL;3;80

(c) Found clusters for com-orkut.

Figure 2: Comparison of the graph–based version of our algorithm against the state-of-the-art.

Algorithm 1: Local Motif Graph Clustering
1: for i = 1, . . . , α do
2: S ← ball around u; M ← Enumerate motifs in S
3: Build (hyper)graph model Hµ based on S and M
4: for j = 1, . . . , β do
5: Partition model Hµ into (C,C), where u ∈ C
6: if C∗ = ∅ ∨ φµ(C) < φµ(C

∗) then C∗ ← C
7: Convert C∗ into a local motif cluster in G

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

SS

(a)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

SS

(b′)
t

k

l

m

n

o

p

q

r

s

SS

(b′′)
t

k

l

m

n

o

p

q

r

s

SS

Figure 3: Example construction ofHµ. (a) Enumerate motifs
touching S. (b’) Build hypergraphHµ. (b”) Build graphHµ.

and its neighborhood. In this work, our focus is the triangle
motif. We enumerate triangles with a polynomial algorithm
proposed in (Chiba and Nishizeki 1985). We apply this algo-
rithm on the subgraph induced by S and its neighborhood.
(Hyper)Graph Model. Our algorithm has a configuration
using a hypergraph model for partitioning and another us-
ing a graph model for partitioning. Our hypergraph model
is Hµ = (S ∪ {t},E) with unweighted nodes and a set E
of nets with a net e for each motif G′ = (V ′, E′) ∈ M
such that e = V ′ if V ′ ⊆ S, and e = V ′ ∩ S ∪ {t} other-
wise. In the former case the net has weight one, in the latter
case its weight equals the number of motif occurrences in
M represented by it. See Fig. 1(c), Fig. 3(b’), and Theo. 1.
Our graph model is Hµ = (S ∪ {t}, Eµ) with unweighted
nodes where Eµ has an edge e for each pair of nodes shar-
ing a motif G′ = (V ′, E′) ∈ M provided that at least one

Graph GL;3;80 MAPPR
φµ |C| t(s) φµ |C| t(s)

com-amazon 0.037 64 0.22 0.153 58 2.68
com-dblp 0.115 56 0.38 0.289 35 3.04
com-youtube 0.172 1443 7.93 0.910 2 10.44
com-livejournal 0.244 387 8.17 0.507 61 173.80
com-orkut 0.150 13168 496.94 0.407 511 923.26
com-friendster 0.368 10610 1339.99 0.741 121 16565.99
Overall 0.181 823 12.67 0.500 50 79.34

Table 1: Average comparison against state-of-the-art.

of its endpoints is contained in S. The weight of an edge
equals the number of motif occurrences containing both its
endpoints. See Fig. 1(c), Fig. 3(b”), and Theo. 1.
Theorem 1. A clusterC inHµ, t /∈ C, implies a cluster inG
whose motif conductance is the ratio of its cut-net (edge-cut)
to its volume in Hµ, assumed Volumeµ(S) ≤ Volumeµ(S).

Partitioning. For partitioning our hypergraph and graph
models, we respectively use KaHyPar (Schlag et al. 2016)
and KaHIP (Sanders and Schulz 2022). For both versions of
our algorithm, we look for a partition where u and t are in
different blocks to ensure consistency. We force it by assign-
ing u to the block that does not contain t after the partition
is computed (before computing φµ).

Experimental Evaluation
Methodology and Instances. We implemented our algo-
rithm in KaHIP (Sanders and Schulz 2011) and KaHy-
Par (Schlag et al. 2016). We used a 64-core AMD EPYC
7702P Linux server with 1 TB RAM. Our test set is the same
used in MAPPR paper (Yin et al. 2017). For each graph, we
use 50 random seed nodes. We compare results against the
globally best clusters found by MAPPR (Yin et al. 2017)
with standard parameters. Our algorithm uses parameters:
graph-based, α = 3, β = 80, label propagation.
Comparison against State-of-the-Art Fig. 2a and 2b
show performance profiles. Our algorithm gets the best or
equal φµ for 80% of the instances, MAPPR gets the best or
equal φµ for 25% of the instances. This is due to the fact
that by performing multiple cluster constructions and refine-
ments our algorithm can explore the solution space better
than MAPPR which simply uses the APPR algorithm. Our
algorithm is faster than MAPPR for 84% of the instances,
besides being on average a factor 6.3 faster. Table 1 shows
average results for each graph and average results overall.
Our algorithm outperforms MAPPR with respect to φµ and
running time for every graph and overall. Figure 2c plots φµ
vs cluster size for the com-orkut graph. Clusters found by
our algorithm are localized in the lowest half of the chart,
while the clusters found by MAPPR are widespread.

Conclusion
We proposed an algorithm which computes local motif clus-
tering via partitioning of (hyper)graph models. Our algo-
rithm computes clusters that have on average one third of
the motif conductance value than MAPPR while being 6.3
times faster on average and removing the necessity of a pre-
processing motif-enumeration on the whole network.

262

References
Benson, A. R.; Gleich, D. F.; and Leskovec, J. 2016.
Higher-order organization of complex networks. Science,
353(6295): 163–166.
Chiba, N.; and Nishizeki, T. 1985. Arboricity and subgraph
listing algorithms. SIAM J. Comp., 14(1): 210–223.
Kannan, R.; Vempala, S.; and Vetta, A. 2004. On cluster-
ings: Good, bad and spectral. JACM, 51(3): 497–515.
Meng, T.; Cai, L.; He, T.; Chen, L.; and Deng, Z. 2019. Lo-
cal higher-order community detection based on fuzzy mem-
bership functions. IEEE Access, 7: 128510–128525.
Murali, M.; Potika, K.; and Pollett, C. 2020. Online local
communities with motifs. In 2020 Second Intl. Conf. on
Transdisciplinary AI (TransAI), 59–66. Los Alamitos, CA,
USA: IEEE Computer Society.
Rohe, K.; and Qin, T. 2013. The blessing of transi-
tivity in sparse and stochastic networks. arXiv preprint
arXiv:1307.2302.
Sanders, P.; and Schulz, C. 2011. Engineering Multilevel
Graph Partitioning Algorithms. In Proc. of the 19th Euro-
pean Symp. on Algorithms, volume 6942 of LNCS, 469–480.
Springer.
Sanders, P.; and Schulz, C. 2022. KaHIP – Karlsruhe
High Qualtity Partitioning Homepage. http://algo2.iti.kit.
edu/documents/kahip/index.html. Accessed: 2022-05-31.
Schlag, S.; Henne, V.; Heuer, T.; Meyerhenke, H.; Sanders,
P.; and Schulz, C. 2016. k-way Hypergraph Partitioning via
n-Level Recursive Bisection. In ALENEX, 53–67.
Shang, R.; Zhang, W.; Zhang, J.; Feng, J.; and Jiao, L. 2022.
Local community detection based on higher-order structure
and edge information. Physica A: Statistical Mechanics and
its Applications, 587: 126513.
Spielman, D. A.; and Teng, S.-H. 2013. A local clustering
algorithm for massive graphs and its application to nearly
linear time graph partitioning. SIAM J. Comp., 42(1): 1–26.
Wagner, D.; and Wagner, F. 1993. Between Min Cut and
Graph Bisection. In FOCS, 744–750. Springer.
Yin, H.; Benson, A. R.; Leskovec, J.; and Gleich, D. F. 2017.
Local higher-order graph clustering. In 23rd ACM SIGKDD,
555–564.
Zhang, Y.; Wu, B.; Liu, Y.; and Lv, J. 2019. Local commu-
nity detection based on network motifs. Tsinghua Science
and Technology, 24(6): 716–727.
Zhou, D.; Zhang, S.; Yildirim, M. Y.; Alcorn, S.; Tong, H.;
Davulcu, H.; and He, J. 2021. High-order structure explo-
ration on massive graphs: A local graph clustering perspec-
tive. ACM TKDD, 15(2): 1–26.

263

