
Parallel Beam Search for Combinatorial Optimization (Extended Abstract)

Nikolaus Frohner1∗, Jan Gmys2, Nouredine Melab2, Günther R. Raidl1, El-ghazali Talbi2

1Institute of Logic and Computation, TU Wien, Vienna, Austria
2University of Lille, Inria Lille - Nord Europe, BONUS, France

{nfrohner, raidl}@ac.tuwien.ac.at, jan.gmys@inria.fr, {nouredine.melab, el-ghazali.talbi}@univ-lille.fr

Introduction
Over the last decade, the increase in computational power
can be largely attributed to parallelization, while single-
threaded performance tends to saturate. Clusters with hun-
dreds of nodes equipped with multiple CPUs and GPUs con-
sisting of thousands of cores become available to more and
more researchers all over the world. With semiconductor ge-
ometries still shrinking we can expect the core density to still
grow even further over the next years.

Accordingly, solution approaches to difficult combinato-
rial optimization problems were designed and implemented
to benefit from these technological transitions. One solu-
tion paradigm is to formulate a problem recursively and
model the solution process as traversal of a search tree, for
instance as done by classic branch-and-bound (B&B) al-
gorithms or A∗ search. Many frameworks for parallel tree
search have been proposed, for instance in Xu et al. (2005)
and Archibald et al. (2020), but the focus so far lied more on
exact approaches. We seek to contribute to bridging this gap
and propose a heuristic parallel tree exploration approach,
namely parallel beam search. Beam search is a well-known
search method where a tree is traversed layer-wise keep-
ing a bounded number of nodes in each layer, resulting in
a polynomial number of nodes to be evaluated—a truncated
breadth-first-search.

Beam search has been used to construct high-quality fea-
sible solutions in the context of branch-and-bound, stan-
dalone, or combined in a hybrid setting with an improvement
heuristic like local search. Quite recently, strong results have
been obtained on difficult scheduling problems, see, e.g., Li-
bralesso et al. (2021) on Permutation Flow Shop Schedul-
ing (PFSP) and Frohner, Neumann, and Raidl (2020) on
the Traveling Tournament Problem (TTP). The most cru-
cial parts are always the evaluation of the nodes, the guid-
ance, and the beam width, limiting the maximum width of
the search tree.

We propose a framework for combinatorial optimization
problems which admit a recursive formulation, i.e., where
there exists the notion of partial solutions with a corre-
sponding state which we can evaluate to guide our search.
While at first focusing on CPU execution models, we already

∗Corresponding author
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have heap-less systems with preallocated memory regions in
mind to pave the way for GPU implementations. Paralleliza-
tion is performed on an intra-node level with shared mem-
ory, where the work in form of the beam’s node expansions
and transitions to successors is split evenly among threads.
While this is a rather straightforward data parallelism ap-
proach, the implementation details to achieve high parallel
efficiency over a broad set of problems are non-trivial and
the focus of our research.

We provide a work-in-progress implementation published
on GitHub1 in the Julia programming language and show
the concrete implementations for two well-known NP-hard
optimization problems, namely Permutation Flow Shop
Scheduling (PFSP) with flowtime objective and the Trav-
eling Tournament Problem (TTP), based on the state-of-the-
art approaches from the literature. In the remainder of this
extended abstract, we give a concise description of the al-
gorithm and first preliminary results on parallelization of
the PFSP, where we observe a parallel efficiency with 32
cores of over 95% on sufficiently large problem instances
and beam widths, resulting in a speed-up of over 30×.

More details of our approach including results on the TTP
will be provided in a related full publication. Future work is
concerned with the parallelization of state duplicate check-
ing and dominance filtering (see Blum, Blesa, and Lopez-
Ibanez (2009)) and to study implementations for more prob-
lems within our framework, for instance the maximum inde-
pendent set problem and string problems.

Parallel Beam Search
In this section, we present the algorithmic details of our
framework and also implementation details which we ob-
served are important to achieve higher parallel efficiency in
Julia. The main idea of beam search is to traverse a search
graph layer by layer and keep in every layer the β most
promising nodes and therefore consider many partial solu-
tions in parallel. If the evaluation function, also called guid-
ance, to rank the node runs in polynomial time, the whole
construction algorithm does. Often the nodes carry addi-
tional state information to facilitate an incremental evalua-
tion of its successors. Relevant parts determining the run-
time are said evaluation of successor nodes, determining the

1https://github.com/nfrohner/parbeam

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

273



Algorithm 1: Data-Parallel Beam Search Algorithm
Input: instance C, auxiliary data A, beam width β,

guidance function b, beams Qup, Qdown,
successor region QS

Output: feasible schedule d

1 dbest = (), Q← Qup, Qnext ← Qdown, nQ ← 1;
2 initialize root node in Q[1];
3 for l← 1 to lmax(C) do
4 nS ← create-successors(C, A, nQ, Q, QS, β, b);
5 nQ ← process-successors(C, l, nS, QS, Q, Qnext);
6 if nQ = 0 then

// no surving successor
7 return dbest;
8 end
9 dbest ← check-for-terminals(C, Qnext, nQ, dbest);

10 Q,Qnext ←flip-beams(Qup, Qdown);
11 end
12 return dbest;

β best ones, and performing the actual transitions to the next
layer.

We make use of a fixed-length representation of solutions
and static memory layout, which allows to greatly reduce
heap operations and therefore the work of the garbage col-
lector in Julia.2 Each incremental successor information is
stored in a predefined slot of its preallocated memory region,
depending on the index of its parent in the beam. The storage
is potentially sparse since fewer than the maximum number
of successors might be stored due to constraints, depending
on the parent state. The storage of the nodes in the beam is
dense due to their comparably larger memory footprint.

In Algorithm 1, we give a high-level description of the
intra-node parallel beam search procedure. It receives the
preprocessed instance C and corresponding auxiliary data
A as input, along with preallocated memory regions for the
nodes and the successors Qup, Qdown, QS, respectively, and
search parameters beam width β, and the guidance func-
tion b. The algorithm returns the best found solution or the
empty solution, if no solution was found, which can happen
for constrained problems. The parallelized functions create-
successors and process-successors call functions themselves
to evaluate successor nodes and make the actual transitions
on concrete data types, which is the problem-specific part
that has to be implemented by the user of the framework.
Both functions return the number of successor information
entries evaluated and the number of actually created succes-
sors after the processing. The selection of the β best suc-
cessors is performed by a parallel histogram approach over
the nodes’ values. We flip between two preallocated beams,
each represents alternatively the current or the next layer.

To distribute the work across threads, we make use of
the Julia Threads module, which allows loop paralleliza-
tion with static scheduling of consecutive chunks of data
to threads. A data parallel pattern is employed, where each

2https://docs.julialang.org/en/v1/manual/performance-tips/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

number of threads

500

1000

1500

2000

2500

3000

82

ru
nt

im
e 

in
 s

ec
on

ds

successor_creation_time
successor_selection
transition_time

Figure 1: Actual distribution of the runtime over the most
relevant algorithmic parts, successor creation, selection, and
transition for PFSP parallel beam search on a VFR instance
with 100 jobs, 40 machines, and a beam width of 640 000.

thread writes into its own private memory region and, if
necessary, these are combined in a final sequential step to
achieve the desired result, e.g., to calculate the minimum and
maximum over an array of numbers. A pitfall is false shar-
ing, where threads interfere with each other due to overlap-
ping cache lines of seemingly independent memory regions.
Furthermore, Julia stores arrays in column-major ordering,
hence for two dimensional arrays, the thread dimension has
to be second and a safety buffer of a cache line length is
added between the data.3 We observed that the binning of
the histogram step would otherwise not parallelize at all with
even slightly increasing runtimes when multithreaded.

Preliminary Results
We implemented a single-shot version of the iterative widen-
ing beam search approach by Libralesso et al. (2021) for
the flowtime variant of the PFSP within our framework. The
achieved results over the famous Taillard benchmark (Tail-
lard 1993) are shown to be competitive (Libralesso et al.
2021) with their introduced guidance which combines a
layer-dependent weighted sum of the machines’ idle times
and the costs-so-far.

We ran experiments on a machine with a single-socket
AMD EPYC 7642 CPU using up to 32 cores and uniform
memory access on 512 GiB of RAM.4 In Figure 1 we see
the runtime (w/o Julia’s startup) distribution over the num-
ber of threads for an example instance of the more recent
VFR benchmark (Vallada, Ruiz, and Framinan 2015) with
100 jobs, 40 machines, and a beam width of 640 000. The
largest portion of work, the successor creation, admits a high
parallel efficiency of 97%, followed by the transition paral-
lel efficiency of also 97%. The selection of the β best drops
down to 55%, but itself is only a small part of the runtime re-
sulting into the total parallel efficiency of 95% with a related
speed-up of over 30×.

3https://juliafolds.github.io/data-parallelism/
4https://www.grid5000.fr/w/Lyon:Hardware#neowise

274



Acknowledgements
This project is partially funded by the Doctoral Program
“Vienna Graduate School on Computational Optimization”,
Austrian Science Foundation (FWF) Project No. W1260-
N35. Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr)

References
Archibald, B.; Maier, P.; Stewart, R.; and Trinder, P. 2020.
YewPar: skeletons for exact combinatorial search. In PPoPP
’20: Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 292–307.
Association for Computing Machinery.
Blum, C.; Blesa, M. J.; and Lopez-Ibanez, M. 2009. Beam
search for the longest common subsequence problem. Com-
puters & Operations Research, 36(12): 3178–3186.
Frohner, N.; Neumann, B.; and Raidl, G. R. 2020. A Beam
Search Approach to the Traveling Tournament Problem. In
Paquete, L.; and Zarges, C., eds., Evolutionary Computa-
tion in Combinatorial Optimization – 20th European Con-
ference, EvoCOP 2020, Held as Part of EvoStar 2020, vol-
ume 12102 of LNCS, 67–82. Springer.
Libralesso, L.; Focke, P. A.; Secardin, A.; and Jost, V. 2021.
Iterative beam search algorithms for the permutation flow-
shop. European Journal of Operational Research. In press.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research, 64(2):
278–285.
Vallada, E.; Ruiz, R.; and Framinan, J. M. 2015. New
hard benchmark for flowshop scheduling problems minimis-
ing makespan. European Journal of Operational Research,
240(3): 666–677.
Xu, Y.; Ralphs, T. K.; Ladányi, L.; and Saltzman, M. J. 2005.
Alps: A framework for implementing parallel tree search al-
gorithms. In The next wave in computing, optimization, and
decision technologies, 319–334. Springer.

275


