
K-Focal Search for Slow Learned Heuristics (Extended Abstract)

Matias Greco1, Jorge Toro1, Carlos Hernández-Ulloa3, Jorge A. Baier1,2

1 Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile
2 Instituto Milenio Fundamentos de los Datos, Chile

3 Facultad de Ingenierı́a y Tecnologı́a, Universidad San Sebastián, Chile
{mogreco, jitoro4}@uc.cl, carlos.hernandez@uss.cl, jabaier@ing.puc.cl

Abstract

Learned heuristics, though inadmissible, can provide very
good guidance for bounded-suboptimal search. Given a sin-
gle search state s and a learned heuristic h, evaluating h(s)
is typically very slow relative to expansion time, since state-
of-the-art learned heuristics are implemented as neural net-
works. However, by using a Graphics Processing Unit (GPU),
it is possible to compute heuristics using batched computa-
tion. Existing approaches to batched heuristic computation
are specific to satisficing search and have not studied the
problem in the context of bounded-suboptimal search. In this
paper, we present K-Focal Search, a bounded suboptimal
search algorithm that in each iteration expands K nodes from
the FOCAL list and computes the learned heuristic values of
the successors using a GPU. We experiment over the Rubik’s
Cube domain using DeepCubeA, a very effective inadmissi-
ble learned heuristic. Our results show that K-Focal Search
benefits both from batched computation and from the diver-
sity in the search introduced by its expansion strategy. Over
standard FS, it improves runtime by a factor of 6, expansions
by up to three orders of magnitude, and finds better solutions,
keeping the theoretical guarantees of Focal Search.

Introduction
Recent work has shown that neural networks can be
trained to produce accurate and effective heuristics to guide
search in a variety of search problems, including domain-
independent planning (Shen et al. 2019; Ferber, Helmert,
and Hoffmann 2020), Sokoban (Groshev et al. 2018), Ru-
bik’s cube, and the sliding-tile puzzles (Agostinelli et al.
2019).

Despite their effectiveness, neural-net heuristics have im-
portant drawbacks. A first drawback is that their computa-
tion is extremely slow relative to other operations carried
out during search. Indeed, our data shows that up to 39%
of search runtime can be consumed computing a neural-
net heuristic. Slow heuristic computation has been tackled
by previous work by exploiting the computational power of
Graphics Processing Units (GPUs), which allows evaluat-
ing neural nets in parallel. Batched Weighted A* (BWAS)
(Agostinelli et al. 2019) is an instance of KBFS (Felner,
Kraus, and Korf 2003), that is similar to Weighted A* in

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which K states are extracted from the OPEN list in each it-
eration of the main loop. After extraction, if the goal has
not been found, all K states are sequentially expanded, and
the heuristic values for the union of their successors are
evaluated via batched computation. Batched computation re-
duces heuristic computation times per state significantly, ul-
timately reducing total runtime.

BWAS does not provide suboptimality guarantees, as a
consequence of a second drawback of neural-net heuristics:
they are not admissible, thus they cannot be directly used
by the many search algorithms that exploit admissibility
to provide quality guarantees. Recently, Spies et al. [2019]
and Araneda, Greco, and Baier; Greco, Araneda, and
Baier [2021; 2022] proposed the use of neural-net heuristics
in combination with admissible heuristics in Focal Search
(FS). However, these approaches do not address the prob-
lem of slow heuristic computation.

In this paper we propose K-Focal Search (K-FS), the first
search algorithm that exploits neural-net heuristics while (1)
providing guarantees on solution quality and (2) addressing
the issue of slow heuristic computation using a GPU. K-FS
generalizes Focal Search (Pearl and Kim 1982). Instead of
expanding the best node from FOCAL, it expands the best K
nodes from FOCAL, producing a batch of successors, whose
heuristic values are computed by the GPU.

We prove that K-FS is a complete bounded suboptimal
algorithm; specifically, given a parameter w ≥ 1, the so-
lution returned are w-optimal, i.e., if a solution with cost c
is returned and c∗ is the cost of an optimal solution, then
c ≤ wc∗. Empirically, we show the applicability of K-FS
at solving the Rubik’s cube using DeepCubeA (Agostinelli
et al. 2019), a very effective learned heuristic. We show that
K-FS outperforms FS across a number of performance in-
dicators, including runtime, and percentage of time spent in
heuristic computation.

K-Focal Search
K-Focal Search (K-FS(k)) is a generalization of Focal
Search and inherits some properties from FS and K-BFS
(Felner, Kraus, and Korf 2003). Instead of selecting one
node for expansion, K-FS(k) extracts the best k nodes from
FOCAL, and unless the goal is among the extracted states,
it expands all such states, computing the heuristic values of
all their successors using GPU batched computation. In case

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

279



w=2.5
Cov. EC Exp. Cost Time h time %

WA* 0 - 252753 - 1800.00 - -
DPS 0 - 263865 - 1800.00 - -
FS (seq) 9 148981 148981 26.22 1695.49 1.95E-03 39.0
K-FS(1) 11 201654 201654 26.36 1671.49 5.43E-04 14.7
K-FS(5) 25 40362 201805 26.24 1504.82 1.62E-04 5.5
K-FS(10) 31 18808 188074 26.23 1373.95 8.10E-05 2.9
K-FS(25) 50 5965 149093 25.80 1059.78 3.31E-05 1.3
K-FS(100) 75 839 83673 25.44 598.45 1.10E-05 0.4
K-FS(120) 77 667 79838 25.51 566.62 9.83E-06 0.4
K-FS(240) 85 245 58212 24.92 415.59 7.65E-06 0.4
K-FS(480) 89 85 39507 24.35 278.50 6.55E-06 0.4

Table 1: Results on Rubik’s Cube

where the FOCAL list contains less than k nodes, it selects
for expansion all nodes in the FOCAL list. K-Focal Search
with k = 1 [K-FS(1)] executes the exact procedure that Fo-
cal Search, but explodes the GPU resource.

Like FS, K-FS receives two heuristics as input: an admis-
sible heuristic h, and a neural-net heuristic hFOCAL. In ad-
dition, it receives a parameter k to control the number of
expansions in each expansion cycle. If a node s selected for
expansion is a goal state, this is returned; otherwise, it is
added to a TO-EXPAND set.

In the successor generation step, the algorithm generates
the successors of all states in TO-EXPAND and adds them
to OPEN. If the successor t ∈ Succ(s) satisfies the subop-
timality bound (i.e. it is such that f(t) ≤ w ∗ fmin), then t
is added to the BATCH set. The value of fmin may increase
during execution, and since there exist states in OPEN that
are not in FOCAL, the algorithm verifies if fmin increased
and inserts in BATCH those states whose f -value is lower
than or equal to w ∗ fmin. Finally, the hFOCAL-values of all
states in BATCH are computed using the GPU and added to
FOCAL.

Besides the computation of hFOCAL using batched compu-
tation, an important difference between K-FS and FS is that
more nodes are expanded in the same expansion cycle; that
is, in the same iteration of the search loop. This has the po-
tential of radically changing the order in which nodes are
expanded, since the children of nodes that would have not
been expanded by FS are added to FOCAL. We prove that
KFS is a complete bounded-suboptimal algorithm.
Theorem 1. K-FS is complete and w-optimal when an ad-
missible heuristic is used to sort OPEN.

Because K-FS does not change the conditions under
which a state is added to FOCAL or OPEN, every state s in
FOCAL is such that f(s) < wmint∈Open{g(t) + h(t)} and
thus when a goal is extracted from FOCAL, it follows that
the suboptimality bound is met.

Empirical Evaluation
Our empirical evaluation seeks to evaluate the performance
of our algorithm and the impact of the k parameter in the
performances with two different suboptimality bounds. We
evaluated our algorithm on the Rubik’s cube domain and
we use the trained models of DeepCubeA (Agostinelli et al.

2019) as learned heuristic. We use a Pattern Database (Korf
1997) as admissible heuristic. For the evaluations, we use
100 random instances from the DeepCubeA test set, which
was generated by randomly scrambling the goal state be-
tween 1,000 and 10,000 times. The algorithms were im-
plemented in Python 3, and the experiments were run on
an Intel Xeon E5-2630 machine with 64GB RAM, using a
single CPU core and one GPU Nvidia Quadro RTX 5000.
For all experiments, we use a 30-minute timeout. Our algo-
rithms are compared with Focal Search (FS) using the same
neural-net heuristic; and two other state-of-the-art bounded-
suboptimal search algorithms: Weighted A* (WA*) and Dy-
namic Potential Search (DPS) (Gilon, Felner, and Stern
2016).

Table 1 shows the coverage (percentage of solved in-
stances), average expansion cycles (EC), average nodes ex-
pansions (exp.), average cost in the solved instances by the
algorithm, average runtime, average time spent to compute
the learned heuristic per state (h time), and the percentage
of the search time which was used to compute the learned
heuristic (%), for all instances in the domain. If an algorithm
does not solve an instance, we add the node expansions, ex-
pansion cycles, and time spent until the time limit.

The results show that, with suboptimality bound w = 2.5,
WA* and DPS can not solve instances within the deadline.
On the other hand, FS (seq) could solve 9% of the instances
and K-FS(1) just two more because batch processing accel-
erates the computation of the learned heuristic, per state. On
average, FS (seq) spent 39% of the search time calculat-
ing the learned heuristic, and K-FS(1) reduces the time to
14.7%. As k increases, the coverage increases up to 89% us-
ing K-FS(480) and performs, on average, one order of mag-
nitude fewer expansions than K-FS(1), finding better cost
solutions. The time spent calculating the heuristic, per each
state, was reduced by almost three orders of magnitude as k
increases, and it went from 39% of the search time to only
0.4

Conclusions and Future Work
In this paper, we presented K-Focal Search, a generaliza-
tion of Focal Search algorithm which expands k nodes from
FOCAL at every expansion cycle. The algorithm builds a
batch of states to calculate a learned heuristic exploiting the
batch processing capability of a GPU.

On the experimental side, we demonstrate the effec-
tiveness of our algorithm the Rubik’s Cube domain using
DeepCubeA, a very effective inadmissible learned heuristic.
We show that our approach outperforms others bounded-
suboptimal heuristic search algorithms such as WA* and
DPS and FS using the learned heuristic by two orders of
magnitude in the number of expansions and three orders of
magnitude in the time spent computing the heuristic. As the
k value increases, the number of expansions cycles always
decrease, but the number of expansions may increase. For
that reason, in future work we will explore how to calibrate
the k parameter. As future work, we seek to move this ap-
proach to a concurrent algorithm that can generate the suc-
cessors and explore the different zones of the state space in
parallel, like to PRA* (Evett et al. 1995) does.

280



Acknowledgements
Matias Greco was supported by the National Agency for
Research and Development (ANID) / Doctorado Nacional
/ 2019 - 21192036. We also thank to Centro Nacional de In-
teligencia Artificial CENIA, FB210017, BASAL, ANID, for
partially funding the authors.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Araneda, P.; Greco, M.; and Baier, J. A. 2021. Exploiting
Learned Policies in Focal Search. In Ma, H.; and Serina,
I., eds., Proceedings of the Fourteenth International Sympo-
sium on Combinatorial Search, SOCS 2021, Virtual Confer-
ence [Jinan, China], July 26-30, 2021, 2–10. AAAI Press.
Evett, M. P.; Hendler, J. A.; Mahanti, A.; and Nau, D. S.
1995. PRA*: Massively Parallel Heuristic Search. J. Paral-
lel Distributed Comput., 25(2): 133–143.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-Best-
First Search. Annals of Math and Artificial Intelligence,
39(1-2): 19–39.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Reinforce-
ment Learning for Planning Heuristics. In Proceedings of
the 1st Workshop on Bridging the Gap Between AI Plan-
ning and Reinforcement Learning (PRL), 119–126. Univer-
sity of Basel.
Gilon, D.; Felner, A.; and Stern, R. 2016. Dynamic Potential
Search - A New Bounded Suboptimal Search. In Baier, J. A.;
and Botea, A., eds., Proceedings of the Ninth Annual Sym-
posium on Combinatorial Search, SOCS 2016, Tarrytown,
NY, USA, July 6-8, 2016, 36–44. AAAI Press.
Greco, M.; Araneda, P.; and Baier, J. 2022. Focal Dis-
crepancy Search for Learned Heuristics. In Proceedings of
the Fourteenth International Symposium on Combinatorial
Search, SOCS 2022, Vienna, Austria, July 21-23, 2022.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In de Weerdt, M.; Koenig,
S.; Röger, G.; and Spaan, M. T. J., eds., Proceedings of the
28th International Conference on Automated Planning and
Scheduling (ICAPS), 408–416. AAAI Press.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Kuipers, B.; and Webber,
B. L., eds., Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI 97, IAAI 97,
July 27-31, 1997, Providence, Rhode Island, USA, 700–705.
AAAI Press / The MIT Press.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(4): 392–399.
Shen, W.; Trevizan, F. W.; Toyer, S.; Thiébaux, S.; and Xie,
L. 2019. Guiding Search with Generalized Policies for Prob-
abilistic Planning. In Surynek, P.; and Yeoh, W., eds., Pro-

ceedings of the 12th Symposium on Combinatorial Search
(SoCS), 97–105. AAAI Press.
Spies, M.; Todescato, M.; Becker, H.; Kesper, P.; Waniek,
N.; and Guo, M. 2019. Bounded Suboptimal Search with
Learned Heuristics for Multi-Agent Systems. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, 2387–2394. AAAI Press.

281


