
Dual Euclidean Shortest Path Search (Extended Abstract)

Ryan Hechenberger, Peter J. Stuckey,
Pierre Le Bodic and Daniel D. Harabor

Faculty of Information Technology, Monash University, Australia
{ryan.hechenberger, daniel.harabor, pierre.lebodic, peter.stuckey}@monash.edu

Abstract

The Euclidean Shortest Path Problem (ESPP) asks us to find a
minimum length path between two points on a 2D plane while
avoiding a set of polygonal obstacles. Existing approaches
for ESPP, based on Dijkstra or A* search, are primal meth-
ods that gradually build up longer and longer valid paths until
they reach the target. In this paper we define an alternative
algorithm for ESPP which can avoid this problem. Our ap-
proach starts from a path that ignores all obstacles, and gen-
erates longer and longer paths, each avoiding more obstacles,
until eventually the search finds an optimal valid path.

Introduction
The Euclidean Shortest Path Problem (ESPP) is fundamen-
tal for applications such as computer video games (Algfoor,
Sunar, and Kolivand 2015). Here the operating environment
(i.e., map) is often given as a set of obstacles and our task is
to find a shortest path, from a start point s to a target point
t, all while avoiding intersecting any obstacles. One of the
reasons ESPP is challenging to solve is that game worlds are
often dynamic: between any two start-target queries, obsta-
cles can be added, moved or removed.

Conventional ESPP methods include algorithms based on
Visibility Graphs (VG) (Lozano-Pérez and Wesley 1979;
Hong, Murray, and Wolf 2016) and Navigation Meshes (De-
myen and Buro 2006; Cui, Harabor, and Grastien 2017),
both of which must convert the Euclidean map to a dis-
crete form more suitable for search. Creating and updating
these discrete representations incurs additional costs which
can dominate search time when the map changes frequently.
More recent methods, such as RayScan (Hechenberger et al.
2020), do not incur any additional costs and they can offer
competitive online performance. All of these methods can
be described as primal solvers: that is, they all solve ESPP
by growing valid optimal paths from s and exploring these
paths in least-cost order, until one eventually reaches t.

The main drawback of the primal approach is the inabil-
ity to avoid fill in. This occurs when the search algorithm
is forced to explore parts of the map that appear promising,
but cannot possibly lead to an optimal solution. To mitigate
fill-in, many works propose to improve the accuracy of the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) medium (b) divide1 (c) circle1

Figure 1: We show 3 of the 6 test maps used in experiments.

heuristic estimator; e.g., (Zhao, Taniar, and Harabor 2018;
Shen et al. 2021). However these approaches usually de-
pend on precomputed auxiliary data, which can be expensive
to create and store, and which becomes entirely invalidated
when the environment changes.

In this paper we describe Dual Pathfinding Search (DPS),
a radically different approach to ESPP which searches as
a dual problem. In dual search we always have a (super)-
optimal path from start to target, but not one that is valid.
We construct a tree of increasingly longer optimal but invalid
paths until we find a valid path.

We then undertake an empirical study which shows that,
in a range of settings, Dual Pathfinding Search can be sub-
stantially faster than currently leading ESPP methods, based
on primal search. The paper is restricted to the case of con-
vex polygonal obstacles (Rohnert 1986), see Figure 1.

Definitions
A path (π) is a string of vertices, from s to t. Every adjacent
pair forms an edge, which can be valid (intersects no ob-
stacles), invalid (intersects obstacle(s)) or tentative (has not
been checked). A path can also be valid (all edges valid),
tentative (has a tentative edge) or invalid. A subpath πab is
the substring of π between vertices a and b.

We denote Op as the obstacle incident to vertex p. All ver-
tices p ∈ π except s and t have an incident obstacle Op that
π bends around. Optimal paths are taut, that is they tightly
bend around each incident obstacle without intersecting it. A
direction D is either CW (clockwise) or CCW (counter-CW)
in orientation, and ¬D swaps the orientation.

We define a D-curve as a subpath πab where with all sub-
strings qwr of three vertices in πab, vector q⃗w does not turn

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

285



q

x
Oq u

Ou

v

Ov p

Op

m

i j

k

O

s t

Figure 2: Replacing edge uv with either a path CW around
obstacle O or CCW around obstacle O.

¬D towards w⃗r; i.e. the orientation is only going straight or
turning in D-orientation. A subpath of only two vertices is
considered both a CW- and CCW-curve.

Given an edge uv and obstacle O, the D-bend BD
uv(O) is

defined as the shortest tentative D-curve from u to v around
obstacle O in direction D. Figure 2 has BCW

uv (O) = uijv
(red dashed path) and BCCW

uv (O) = umkv (blue dashed
path).

Dual Pathfinding Search
DPS proceeds similarly to A* search, with two important
differences: (i) DPS operates on tentative paths instead of
vertices; (ii) DPS discovers obstacles by checking tentative
paths for feasibility and then generates new successor paths
by introducing detours around the discovered obstacles.
A* Search: DPS uses the tentative path length as an f -value.
A shortest path is identified when a path popped of the queue
is proven valid, which terminates the search.
Expansion: When a path π is proven invalid, DPS produces
two successor paths around the invalidating obstacle O, by
essentially modifying π to bend tightly around O using a D-
bend in each direction, then adjusting each path to maintain
tautness.

Formally, we expand π by first checking the validity of
each edge, until one edge uv is proven invalid by an obstacle
O.

For each D ∈ {CW,CCW}, we do the following. Com-
pute the maximal-length D-curve C of π that contains uv.
The successor path πD will differ from π only in that sub-
path C. Call a and b the first and last vertices of C. We first
replace uv in πD by the D-bend BD

uv(O). We then modify
πD
ab by removing vertices between a and b (exclusively) so

that the resulting subpath is taut (except possibly at a and b).
We next consider the incident obstacle Oa (if it exists), if

corner yax ∈ πD is not taut around Oa, then we have to
bend πD around Oa until it is taut. To do this, we replace
ax in πD with B¬D

ax (Oa). If need be we do the same for
ybx ∈ πD with yb. Path πD is now a successor.

Refer to Figure 2 for a successor example. Path π =
squvpt has edge uv intersect O, successor πCW will first
be assigned path π. Next we discover the maximal-length
CW-curve including uv, giving us πCW

qp = quvp, the subpath

maps unit DPS DPS-R Poly RS
small ms 7.08 7.89 14.0 39.4
medium ms 33.4 82.0 86.0 366
divide1 ms 32.1 109 444 668
divide3 ms 42.5 3480 1100 1860
circle1 ms 82.1 117 49.0 726
circle2 s 67.3 - 0.592 6.75

Table 1: Total runtime on each of our six test map. small is
similar to medium with less objects, divide3 is similar to
divide1 but with 3 dividers, and circle2 like circle1 with
more (smaller) objects.

that we will modify. We replace uv with BCW
uv = uijv in

πCW to give us πCW = squijvpt, then correct for tautness
between q and p by removing vertices u and v that violates
it, giving πCW = sqijpt. Corner sqi is not taut around Oq ,
thus replace qi with BCCW

qi (Oq) = qxi. Corner jpt is taut
around Op, thus we do nothing. We now have the successor
πCW = sqxijpt.

Experiments and Conclusions

We evaluate DPS on a set of 6 test maps (we show 3 in
Figure 1). Our implementation is C++ (Hechenberger 2022)
and compiled with g++ 11.1.0. Our test machine runs Arch-
Linux (5.15.4), has 16GB RAM (12GB made available
to algorithm) and an Intel Core i7-8750H CPU fixed at
2.2GHz no turbo boost. For each map we solve 1000 in-
stances (st-pairs). Test maps and implementations are avail-
able (Hechenberger 2022).

Results in Table 1 compare DPS against state-of-the-art
methods Polyanya (Cui, Harabor, and Grastien 2017) and
RayScan (Hechenberger et al. 2020). The A* expansion in
DPS was done by choosing a random edge uv and checking
its validness until an invalid is determined. We then select
the largest looking obstacle intersecting uv by considering
all obstructions O and choosing the first vertex q on O in
CW-bend and first vertex r in CCW-bend on O, then taking
the minimum of path length uqv and urv, choosing the ob-
stacle with the maximum of this value. DPS-R simply selects
a random invalid edge then randomly chooses an obstacle
blocking such edge.

As we can see, DPS can massively outperform its com-
petitors is many instances, see particularly well with divide3
with a speedup of greater than 10. The selection of the ob-
stacle, and to a lesser extent edge, is important for the run-
time of DPS, as we see with random obstacle selecting in
DPS-R, not beating DPS in anything and even getting out-
of-memory on circle2. This is a result of DPS not being a
polynomial algorithm in the worst case, though that requires
unfavourable circumstances and is not common, as we see
exponential runtime with these maps. Improvements on per-
formance can be achieved with pruning rules, which we have
not included in this extended abstract.

286



Acknowledgements
This work is partially supported by the Australian Research
Council under grant DP200100025.

References
Algfoor, Z. A.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology, 2015: 7.
Cui, M. L.; Harabor, D.; and Grastien, A. 2017.
Compromise-free Pathfinding on a Navigation Mesh. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 496–502. AAAI Press.
Demyen, D.; and Buro, M. 2006. Efficient triangulation-
based pathfinding. In Aaai, volume 6, 942–947.
Hechenberger, R. 2022. Program and data sets. https:
//bitbucket.org/ryanhech/rayscan/. Accessed: 2022-05-01.
Hechenberger, R.; Stuckey, P. J.; Harabor, D.; Bodic, P. L.;
and Cheema, M. A. 2020. Online Computation of Euclidean
Shortest Paths in Two Dimensions. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling (ICAPS), 134–142. AAAI Press.
Hong, I.; Murray, A. T.; and Wolf, L. J. 2016. Spatial Filter-
ing for Identifying a Shortest Path Around Obstacles. Geo-
graphical Analysis, 48(2): 176–190.
Lozano-Pérez, T.; and Wesley, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obsta-
cles. Communications of the ACM, 22(10): 560–570.
Rohnert, H. 1986. Shortest paths in the plane with convex
polygonal obstacles. Information Processing Letters, 23(2):
71–76.
Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey,
P. J. 2021. Fast optimal and bounded suboptimal Euclidean
pathfinding. Artificial Intelligence, 103624.
Zhao, S.; Taniar, D.; and Harabor, D. D. 2018. Fast k-nearest
neighbor on a navigation mesh. In Eleventh Annual Sympo-
sium on Combinatorial Search.

287


