
IPO-MAXSAT: Combining the In-Parameter-Order Strategy for
Covering Array Generation with MaxSAT Solving (Extended Abstract*)

Irene Hiess, Ludwig Kampel, Michael Wagner, Dimitris E. Simos
SBA Research, MATRIS Group, Floragasse 7, 1040 Wien, Austria

ihiess@sba-research.org, lkampel@sba-research.org, mwagner@sba-research.org, dsimos@sba-research.org

Abstract
Covering arrays (CAs) are discrete objects appearing in com-
binatorial design theory that find practical applications, most
prominently in software testing. The generation of optimized
CAs is a difficult combinatorial optimization problem being
subject to ongoing research. Previous studies have shown that
many different algorithmic approaches are best suited for dif-
ferent instances of CAs. In this extended abstract we describe
the IPO-MAXSAT algorithm, which adopts the prominent
IPO strategy for CA generation and uses MaxSAT solving
to optimize the occurring sub-problems.

Introduction
Covering arrays (CAs) are discrete objects appearing in
combinatorial design theory having specific coverage prop-
erties regarding the appearance of tuples in sub-arrays. In
recent years, CAs find application in a branch of automated
software testing called combinatorial testing (Kuhn, Kacker,
and Lei 2013). Thereby, the defining property of CAs, the
coverage of all t-tuples in subarrays, has shown to be par-
ticularly beneficial when CAs are used to derive test sets,
as these can reveal all interaction faults based on parameter-
value combinations of up to t input parameters of the exam-
ined system, see (Kuhn et al. 2009).

A covering array denoted as CA(N ; t, k, v) is defined as
an N × k matrix, with entries coming from a v-ary alphabet
and the property that each v-ary t-tuple appears at least once
as a row of each sub-array when selecting any t columns of
the array, see also (Colbourn and Dinitz 2006). The 4 × 3
matrix in the top left corner of Figure 1 gives an example of
a CA(4; 2, 3, 2): selecting any two of the three columns, we
find each binary 2-tuple appearing as a row. The parameter
t is also called the strength of a CA, and we will refer to
the number of rows N also as the size of a CA. The tuples
appearing in the rows of CAs are called t-way interactions.

Similar to other covering problems, such as set cover or
vertex cover, the typical problem arising with the notion of
CAs is that of finding CAs with a minimal number of rows
N . For given t, k and v this minimal number is called cover-
ing array number and denoted as CAN(t, k, v). CAs achiev-
ing this bound are called optimal.

*This extended abstract presents previously unpublished work.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Using SAT solving for CA generation, optimal arrays
were found for small instances. The problem of CA exis-
tence for given CA parameters was encoded into SAT (Hnich
et al. 2006; Banbara et al. 2010), such that a CA, if one ex-
ists, can be extracted from a model of the formula. In similar
fashion, the optimization problem of finding an optimal CA
was encoded into MaxSAT (Ansótegui et al. 2013). How-
ever, those approaches do not scale well.

In applications optimality is generally desired, but not
needed, as sufficiently small CAs that are derived in a rea-
sonable amount of time are satisfactory. In this context, sev-
eral algorithms and heuristic construction techniques have
been developed to generate CAs with a small number of
rows, see (Torres-Jimenez, Izquierdo-Marquez, and Avila-
George 2019) for a survey. Amongst these a very prominent
family of algorithms are the so called in-parameter-order
(IPO) algorithms (Lei and Tai 1998), which construct a CA
by incrementally appending columns and rows to a small ini-
tial CA. Various CA generation tools, such as e.g. (Yu et al.
2013) and (Wagner et al. 2020), implement such algorithms.

In this abstract we describe IPO-MAXSAT, to the best of
our knowledge, the first approach that combines MaxSAT
solving with the IPO strategy for CA generation.

Introduction to In-Parameter-Order Algorithms
In (Lei and Tai 1998) the IPO strategy was introduced
and initially applied for the generation of CAs of strength
two. The concept was later generalized for CAs of arbitrary
strength in (Lei et al. 2007).

The characteristic of the IPO strategy (see Figure 1 for a
schematics) is that for the generation of a CA of strength t
with k columns over a v-ary alphabet, it starts with a vt × t
array covering all t-way interactions of the first t columns.
This array is then extended iteratively with one column at a
time until a CA with k columns is attained. The addition of
a column is called the horizontal extension (highlighted in
blue in Figure 1). However, the addition of a column intro-
duces several new t-way interactions, of which some might
not be covered by the current array. Therefore, after each
horizontal extension a vertical extension step (the green part
in Figure 1) is performed, in which several rows can be
added in order to restore coverage of all t-way interactions.
Hence, after each vertical extension step we are guaranteed
that the current array is a CA. Interleaving horizontal exten-

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

288



Figure 1: Schematics of the IPO strategy, for generating a
binary CA of strength t = 2. Horizontal extension high-
lighted in blue, vertical extension highlighted in green and
star-values highlighted in red.

Algorithm 1: IPO Strategy

Input: t, k, v
CA← {0, . . . , v − 1}t cross-product of first t columns
for l← t + 1, . . . , k do

HorizontalExtension(l)
if there are uncovered t-way interactions then

VerticalExtension(l)
end if

end for
assigns star-values arbitrarily
return CA

sions with vertical extensions the desired CA(N ; t, k, v) is
generated. Any row that is added in a vertical extension step
is initialized with so called star-values (also called don’t-
care-values in the literature), which represent entries that
have not yet been assigned a value. These star-values are
generally not considered in the horizontal extension, but en-
able the vertical extension to merge missing t-way interac-
tions into existing rows. Should there remain star-values in
the final N × k array, they can be assigned arbitrarily before
the CA is returned. We give an overview of the IPO strategy
in form of a pseudo code in Algorithm 1.

IPO-MAXSAT
Our IPO-MAXSAT algorithm is a new realization of the
IPO strategy where a MaxSAT solver is utilized for hori-
zontal extension. For every such extension a MaxSAT for-
mula is given, i.e. we create a propositional formula in CNF,
composed of hard clauses and weighted soft clauses. The ar-
ray extension is then derived from the solution found by the
MaxSAT solver. For vertical extension we use the greedy al-
gorithm proposed in (Lei et al. 2007). In the following para-
graph we briefly describe the MaxSAT formula for horizon-
tal extension.

Horizontal extension In horizontal extension an existing
CA is extended with a new column. Referring to Figure 1,
we want to find values for the hi in the blue part, and, un-
like the IPO algorithm, also for the star-values si in the red
parts. We aim to choose an extension, where the maximal

Figure 2: Experimental results for CA(N ; 3, k, 2).

number of t-way interactions is covered amongst all possi-
ble assignments of values for these variables. Additionally,
we maximize the number of star-values in the resulting ar-
ray. The formula Φ for horizontal extension consists of hard
clauses for validity of assignments, soft clauses with low pri-
ority for star-value maximization and soft clauses with high
priority for coverage maximization.

Preliminary Experiments
We conducted our initial experiments on a server with an
AMD EPYC 7502P processor with 32 cores at 2.5 GHz
base clock and 3.35 GHz boost clock and 128GB of RAM.
For each computation we used a time limit of 3 600 sec-
onds. In Figure 2 we present a comparison of IPO-MAXSAT
using the MaxSAT solver EvalMaxSAT (Avellaneda 2021)
with state-of-the-art algorithms and bounds. In particular,
we compare against: SIPO: an algorithm implementing the
IPO strategy and using Simulated Annealing to improve in-
termediate solutions in the horizontal extension steps (Wag-
ner, Kampel, and Simos 2021), FIPOG: a representative of
a state-of-the-art IPO algorithm for CA generation (Kleine
and Simos 2018), NIST Tables: the largest online repository
of CAs under (Covering Arrays Team, National Institute of
Standards and Technology (NIST) 2022), generated with the
IPOG-F algorithm proposed in (Forbes et al. 2008) and CA
Tables: the currently best known upper bounds on covering
array numbers (CAN) as recorded under (Colbourn 2022).

Results and Future Work
Our experimental results show that IPO-MAXSAT can pro-
duce smaller CAs when compared to similar approaches, at
the cost of worse scalability. Further, our results show that
even when each individual extension step is optimal, the IPO
approach does not necessarily produce optimal CAs. We be-
lieve that our experiments nicely display both the possibili-
ties and limitations of the IPO strategy and we hope that our
findings can spark further research into more effective IPO
algorithms.

Acknowledgments
SBA Research (SBA-K1) is a COMET Centre within the
framework of COMET - Competence Centers for Excellent
Technologies Programme and funded by BMK, BMDW, and
the federal state of Vienna. The COMET Programme is man-
aged by FFG.

289



References
Ansótegui, C.; Izquierdo, I.; Manyà, F.; and Torres Jiménez,
J. 2013. A Max-SAT-Based Approach to Constructing Op-
timal Covering Arrays. In Artificial Intelligence Research
and Development, 51–59. IOS Press.
Avellaneda, F. 2021. A short description of the solver Eval-
MaxSAT. MaxSAT Evaluation 2021, 10–11.
Banbara, M.; Matsunaka, H.; Tamura, N.; and Inoue, K.
2010. Generating Combinatorial Test Cases by Efficient
SAT Encodings Suitable for CDCL SAT Solvers. In
Fermüller, C. G.; and Voronkov, A., eds., Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 112–126.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-642-16242-8.
Colbourn, C. J. 2022. Covering Array Tables for t=2,3,4,5,6.
Available at http://www.public.asu.edu/∼ccolbou/src/tabby/
catable.html, Accessed on 2022-03-13.
Colbourn, C. J.; and Dinitz, J. H. 2006. Handbook of com-
binatorial designs. CRC press.
Covering Arrays Team, National Institute of Standards and
Technology (NIST). 2022. Covering Arrays generated by
IPOG-F. Available at https://math.nist.gov/coveringarrays/
ipof/ipof-results.html, Accessed on 2022-03-13.
Forbes, M.; Lawrence, J.; Lei, Y.; Kacker, R. N.; and Kuhn,
D. R. 2008. Refining the in-parameter-order strategy for
constructing covering arrays. Journal of Research of the Na-
tional Institute of Standards and Technology, 113(5): 287.
Hnich, B.; Prestwich, S.; Selensky, E.; and Smith, B. 2006.
Constraint Models for the Covering Test Problem. Con-
straints, 11: 199–219.
Kleine, K.; and Simos, D. E. 2018. An Efficient Design
and Implementation of the In-Parameter-Order Algorithm.
Mathematics in Computer Science, 12(1): 51–67.
Kuhn, D.; Kacker, R.; and Lei, Y. 2013. Introduction to
Combinatorial Testing. Chapman & Hall/CRC Innovations
in Software Engineering and Software Development Series.
Taylor & Francis.
Kuhn, R.; Kacker, R.; Lei, Y.; and Hunter, J. 2009. Combi-
natorial Software Testing. Computer, 42(8): 94–96.
Lei, Y.; Kacker, R.; Kuhn, D. R.; Okun, V.; and Lawrence,
J. 2007. IPOG: A General Strategy for T-Way Software
Testing. In 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems
(ECBS’07), 549–556.
Lei, Y.; and Tai, K. 1998. In-parameter-order: a test genera-
tion strategy for pairwise testing. In Proceedings Third IEEE
International High-Assurance Systems Engineering Sympo-
sium (Cat. No.98EX231), 254–261.
Torres-Jimenez, J.; Izquierdo-Marquez, I.; and Avila-
George, H. 2019. Methods to Construct Uniform Covering
Arrays. IEEE Access, 7: 42774–42797.
Wagner, M.; Kampel, L.; and Simos, D. E. 2021. Heuris-
tically Enhanced IPO Algorithms for Covering Array Gen-
eration. In Combinatorial Algorithms, 571–586. Springer
International Publishing.

Wagner, M.; Kleine, K.; Simos, D. E.; Kuhn, R.; and Kacker,
R. 2020. CAGEN: A fast combinatorial test generation tool
with support for constraints and higher-index arrays. In 2020
IEEE International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), 191–200.
Yu, L.; Lei, Y.; Kacker, R. N.; and Kuhn, D. R. 2013. ACTS:
A Combinatorial Test Generation Tool. In 2013 IEEE Sixth
International Conference on Software Testing, Verification
and Validation, 370–375.

290


